class m. Hence $w_{x}=0$ cuts $C(n ; m)$ in an nm-line, by Bezout's theorem.*

If we project the curves (11), (12) upon the x_{3} plane, we may obtain the equation of the projected $m n$-line by interchanging point and line coordinates in Clebsch's proof of Bezout's theorem (see Vorlesungen über Geometrie, page 282). Every full invariant of this $m n$-line gives by our translation principle an equation of condition among the coordinates w_{i}.

An alternative method of procedure is to use equations (1), (3), replacing f_{1} by g_{m} in (1). Rational elimination processes give a form in each variable $p_{1}, q_{1}, p_{2}, q_{2}$ with coefficients rational in w_{i}. Of these forms that in p_{2} is the transformed of the one in p_{1}, say of $F_{1}\left(p_{1}\right)$, by a homographic transformation, and that in q_{2} is likewise the transformed of the one in q_{1}, viz. $\varphi_{1}\left(q_{1}\right)$. But φ_{1} is not transformable into F_{1}. As an invariant of the $m n$-line of intersection we may then select a simultaneous invariant of the binary forms $F_{1}\left(p_{1}\right), \varphi_{1}\left(q_{1}\right)$, and by translation this invariant goes into an equation of condition in the variables w_{i}, representing a contravariant surface.

University of Pennsylvania, Philadelphia, Pa.

SOME MATHEMATICAL BOOKLET SERIES.

Matematica dilettevole e curiosa. Di Italo Ghersi. Con 693 figure originali dell'Autore. Milano, Ulrico Hoepli, 1913. viii +730 pp . Price L. 9.50.
Wo steckt der Fehler? Trugschlüsse und Schülerfehler. Gesammelt von Dr. W. Lietzmann und V. Trier. Mathematische Bibliothek, Nr. 10. Leipzig and Berlin, B. G. Teubner, 1913. 57 pp . Price M. 0.80.
English and French mathematical literature is entirely lacking in such admirable booklets dealing with elementary topics, as those which have wide circulation in Germany and Italy. \dagger I refer to the Mathematische Bibliothek of the

[^0]
[^0]: * Bezout, Theorié générale des Equations algébriques (1779).
 \dagger It may be suggested that the volumes on Elimination by Laurent and on Geometrography by Lemoine, of the excellent "Scientia" series (Gauthier-Villars, Paris) are elementary, but these are only two of a dozen volumes by Appell, Gibbs, Hadamard, Poincaré, etc., which certainly may not be classed in this way. And even these two brochures are more

