NOTE ON A NEW NUMBER THEORY FUNCTION.

BY MR. R. D. CARMICHAEL.

(Read before the American Mathematical Society, September 13, 1909.)
The present note deals with the properties of a number theory function defined by means of Euler's ϕ-function in the following way :

$$
\begin{aligned}
& \lambda\left(p^{a}\right)=\phi\left(p^{a}\right) \text { when } p \text { is an odd prime ; } \\
& \lambda\left(2^{a}\right)=\phi\left(2^{a}\right) \text { if } a=0,1 \text {, or } 2 ; \lambda\left(2^{a}\right)=\frac{1}{2} \phi\left(2^{a}\right) \text { if } a>2 ; * \\
& \lambda\left(2^{a} p_{1}^{a_{1}} \cdots p_{i}^{a_{i}}\right)=\text { the lowest common multiple of } \lambda\left(2^{a}\right), \lambda\left(p_{1}^{a_{1}}\right), \\
& \cdots, \lambda\left(p_{i}^{a_{i}}\right), p_{1}, \cdots, p_{i} \text { being different odd primes. }
\end{aligned}
$$

Throughout, in a congruence such as

$$
x^{\alpha} \equiv 1 \quad(\bmod n)
$$

it will be assumed that x is prime to n. Then we have the theorem

$$
\begin{equation*}
x^{\lambda\left(p^{a}\right)} \equiv 1 \quad\left(\bmod p^{a}\right) \tag{1}
\end{equation*}
$$

for every prime p and integer a. For, by Fermat's theorem, (1) is true when p is an odd prime and also when $p=2$ and $a=1$ or 2 , in view of the definition of λ. Then we have to examine only the case where $p=2$ and $a>2$.

Now by Fermat's theorem we have

$$
x^{\phi\left(2^{a}\right)} \equiv 1 \quad\left(\bmod 2^{a}\right), \quad(a>2)
$$

But it is known that the foregoing congruence has no primitive root ; that is, for any odd x the congruence is true when $\phi\left(2^{a}\right)$ is replaced by some factor of $\phi\left(2^{a}\right)$ less than the number itself. But $\frac{1}{2} \phi\left(2^{a}\right)=\lambda\left(2^{a}\right)$ is the largest factor of $\phi\left(2^{a}\right)$ less than itself and contains all other such factors. Then

$$
x^{\frac{1}{\phi} \phi\left(2^{a}\right)} \equiv 1 \quad\left(\bmod 2^{a}\right), \quad(a>2)
$$

Hence the theorem of congruence (1) is proved.
This result may be employed to obtain a simple demonstration of the following analog of Fermat's general theorem :

[^0]
[^0]: * It is in respect to this part of the definition alone that $\lambda(n)$ differs from $\psi(n)$ defined by Bachmann, Niedere Zahlentheorie, I, p. 157.

