In the transformed coordinates, let us represent the point with complex coordinates ($x^{\prime}+i x^{\prime \prime}, y^{\prime}+i y^{\prime \prime}$) by a vector from (x^{\prime}, y^{\prime}) to $\left(x^{\prime}+x^{\prime \prime}, y^{\prime}+y^{\prime \prime}\right)$. If we change to another pair of conjugate axes $O X_{1}, O Y_{1}$ the coordinates are changed to $x_{1}^{\prime}+i x_{1}^{\prime \prime}$, $y_{1}^{\prime}+i y_{1}^{\prime \prime}$, but the vector is left unchanged since its end points are.

Consider, however, the intersections of C with L. These are given by $x^{\prime}=\infty, x^{\prime \prime}=0, y^{\prime}=0, y^{\prime \prime}= \pm i x^{\prime}$. That is, the points $x^{\prime}, \pm y^{\prime \prime}$ are the intersections of $y= \pm x$ with L.

But the lines $y= \pm x$ change when we change the axes as above. Thus the vectors taken to represent the intersections of C with L also change.

If with Cauchy we represent $\left(x^{\prime}+i x^{\prime \prime}, y^{\prime}+i y^{\prime \prime}\right)$ by a vector joining the real points on the circular rays through it, we meet the same difficulty. For these real points are ($x^{\prime}+y^{\prime \prime}, y^{\prime}-x^{\prime \prime}$) and ($x^{\prime}-y^{\prime \prime}, y^{\prime}+x^{\prime \prime}$) ; that is, in the case under consideration, they are $(\infty, 0)$ and $(0,0)$ so that the direction changes as $O X$ does.

Von Staudt's representation is, however, unimpaired ; since his imaginary intersection is the involution of all the point pairs cut out on L by the involution of all the line pairs $y= \pm x$. The vector representation should then be regarded as a symbol, adapted to the particular coordinates used, for the more complete Von Staudt representation.

University of Nebraska,
July 16, 1909.

MAUROLYCUS, THE FIRST DISCOVERER OF THE PRINCIPLE OF MATHEMATICAL INDUCTION.

BY DR. G. VACCA.

Introductory Note. - Soon after the publication of my review of Voss's address (Bulletin, volume 15, page 405), wherein I considered at some length the history of mathematical induction, I received a note from Professor Moritz Cantor of Heidelberg, in which he called my attention to Dr. Vacca's research on this same historical topic. As Dr. Vacca's research was not accessible to me, I wrote to him for information and received, in reply, the following notes, which will doubtless be of general interest to American readers. - Florian Cajori.

Many years ago I published in the Formulaire de Mathé-

