A TABLE OF MULTIPLY PERFECT NUMBERS.

BY PROFESSOR R. D. CARMICHAEL.

(Read before the American Mathematical Society, February 23, 1907.)
A multiply perfect number is one which is an exact divisor of the sum of all its divisors, the quotient being the multiplicity.* The object of this paper is to exhibit a method for determining all such numbers up to $1,000,000,000$ and to give a complete table of them. I include an additional table giving such other numbers as are known to me to be multiply perfect.

Let the number N, of multiplicity $m(m>1)$, be of the form

$$
N=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}
$$

where $p_{1}, p_{2}, \cdots, p_{n}$ are different primes. Then by definition and by the formula for the sum of the factors of a number, we have
$m=\frac{p_{1}^{a_{1}}+p_{1}^{a_{1}-1}+\cdots+p_{1}+1}{p_{1}^{a_{1}}} \cdots \frac{p_{n}^{a_{n}}+p_{n}^{a_{n}-1}+\cdots+p_{n}+1}{p_{n}^{a_{n}}}$.
Hence

$$
\begin{equation*}
m<\frac{p_{1}}{p_{1}-1} \cdot \frac{p_{2}}{p_{2}-1} \cdots \frac{p_{n}}{p_{n}-1} . \tag{2}
\end{equation*}
$$

These formulas will be of frequent use throughout the paper.
Since $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23=223,092,870$, multiply perfect numbers less than $1,000,000,000$ contain not more than nine different prime factors; such numbers, lacking the factor 2 , contain not more than eight different primes; and, lacking the factors 2 and 3, they contain not more than seven different primes.

First consider the case in which N does not contain either 2 or 3 as a factor. By equation (2) we have

$$
\begin{equation*}
m<\frac{5}{4} \cdot \frac{7}{6} \cdot \frac{11}{10} \cdot \frac{13}{12} \cdot \frac{17}{16} \cdot \frac{19}{1} \frac{9}{8} \cdot \frac{23}{2} 2=\frac{6}{3} \frac{7}{3} \frac{6}{1} \frac{0}{7} \frac{9}{7} 6 . \tag{3}
\end{equation*}
$$

Hence $m=2$; moreover seven primes are necessary to this value. Now, $5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23=37,182,145$. Therefore, since we are not to consider numbers greater than $1,000,000,000$,

[^0]
[^0]: * The name " multiply perfect" was introduced by Lehmer, Annals of Math., ser. 2, vol. 2, p. 103.

