THE GROUPS GENERATED BY THREE OPER-
 ATORS EACH OF WHICH IS THE
 PRODUCT OF THE OTHER TWO.

BY PROFESSOR G. A. MILLER.

(Read before the American Mathematical Society, February 23, 1907.)
LET s_{1}, s_{2}, s_{3} represent any three operators of a finite group G which satisfy the three conditions

$$
s_{1} s_{2}=s_{3}, \quad s_{2} s_{3}=s_{1}, \quad s_{3} s_{1}=s_{2}
$$

These give rise to the following equations:
$s_{1} s_{2}=s_{2}^{-1} s_{1}=s_{2} s_{1}^{-1}=s_{3}, s_{2} s_{3}=s_{3} s_{2}^{-1}=s_{3}^{-1} s_{2}=s_{1}, s_{3} s_{1}=s_{1}^{-1} s_{3}=s_{1} s_{3}^{-1}=s_{2}$. From the first continued equation it follows that s_{1} and s_{2} transform each other into their inverses and have a common square. From the second and third similar results follow with respect to s_{2}, s_{3} and s_{1}, s_{3} respectively. Hence s_{1}, s_{2}, s_{3} are three operators such that each is transformed into its inverse by the other two. As any set of operators which fulfill the condition that each one is transformed into its inverse by all the others generates either the hamiltonian group of order 2^{a} or the abelian group of this order* and of type ($1,1,1, \cdots$), it follows that s_{1}, s_{2}, s_{3} generate one of the following four groups: identity, the group of order 2, the four-group, or the quaternion group. That is, if s_{1}, s_{2}, s_{3} satisfy the three conditions imposed on them at the beginning of this paragraph, G must be one of these four groups, and it is evident that these operators may be so chosen that G is any one of these four groups.

If the given conditions are replaced by:

$$
s_{1} s_{2}=s_{3}, \quad s_{2} s_{3}=s_{1}, \quad s_{1} s_{3}=s_{2}
$$

there results the following system of continued equations:
$s_{1} s_{2}=s_{2}^{-1} s_{1}=s_{1}^{-1} s_{2}=s_{3}, s_{2} s_{3}=s_{3} s_{2}^{-1}=s_{2} s_{3}^{-1}=s_{1}, s_{1} s_{3}=s_{1}^{-1} s_{3}=s_{1} s_{3}^{-1}=s_{2}$.
From the first one of these it follows that s_{2} is transformed into its inverse by s_{1} and that the two operators $s_{1}, s_{1}^{-1} s_{2}$ are of order 2 since each of them is equal to its inverse. From the second and third it follows that s_{2} is also transformed into its inverse

[^0]
[^0]: * Quar. Jour. of Mathematics, vol. 37 (1906), p. 287.

