NOTE ON THE ORIENTATION OF A SECANT.

BY PROFESSOR L. D. AMES.

(Read at the Preliminary Meeting of the Southwestern Section of the American Mathematical Society, December 1, 1906.)

In a previous paper * the orientation of curves and their tangents is briefly discussed. For certain problems in the theory of the potential function it is desirable to be able to define uniquely the positive sense along a secant through two variable points of an open smooth curve in such a way that the angle α between the positive direction of the secant and a fixed line shall be a continuous function of the two variable points. Such a definition will include the tangent as a special case. A natural method would be to define the positive sense uniquely and then prove that α is continuous. Another method would be to define the positive sense of the secant for one position and then define the positive sense in every other position so that the angle α shall be continuous. Either method involves somewhat troublesome considerations if the angle is defined by means of any one of the inverse trigonometric functions. The method of defining an angle used in the paper above mentioned proves useful in this case.

Given the open curve

$$
x=x(t), \quad y=y(t), \quad t_{0} \leqq t \leqq T
$$

where $x, y, d x / d t, d y / d t$ are single-valued and continuous in the interval $\left(t_{0}, T\right)$, and where

$$
x\left(t_{1}\right) \neq x\left(t_{2}\right), \quad y\left(t_{1}\right) \neq y\left(t_{2}\right) \quad \text { when } t_{1} \neq t_{2} .
$$

Define a secant through the points t_{1}, t_{2} as follows:

$$
X=\epsilon \lambda \rho+x\left(t_{1}\right), \quad Y=\epsilon \mu \rho+y\left(t_{1}\right)
$$

where ϵ is arbitrarily chosen either +1 or $-1, \rho$ is the variable parameter, and

[^0]
[^0]: * "An arithmetic treatment of some problems in analysis situs," Amer. Jour. of Mathematics, Oct., 1905, p. 349.

