THE GROUP OF A TACTICAL CONFIGURATION.

BY PROFESSOR L. E. DICKSON.

(Read before the American Mathematical Society, December 29, 1904.)

1. A tactical configuration, connected with the abelian group G_{p^m} of type $(1, 1, \dots, 1)_m$ and serving to define the general linear homogeneous group H modulo p on m variables, has been given by Professor Moore.* As an obvious generalization, consider the configurations defining the various subgroups The example that I give had its origin in the following of H. problem : \dagger Required the number N_n of all possible ways of separating the $2^{2n} - 1$ operators other than identity of $G_{2^{2n}}$ into $2^{n} + 1$ sets each of $2^{n} - 1$ operators, such that the operators of any set together with identity form a subgroup G_{2^n} and such that no two sets have a common operator. Here $G_{2^{2n}}$ is assumed to be an abelian group of type $(1, 1, \dots, 1)_{2n}$; for example, the group of all linear transformations on 2n variables which multiply each variable by ± 1 .

2. That such a separation is always possible is easily shown. The group of automorphisms of $G_{2^{2n}}$ may be taken concretely as the group of all linear homogeneous transformations modulo 2 on 2n variables. The latter contains \ddagger a transformation S whose characteristic equation of degree 2n is irreducible modulo 2, so that S is of period $2^{2n} - 1$. In particular, an operator Σ of period $2^n - 1$ occurs. Let $I, a_1, b_1, a_1b_1, \cdots$ be the operators of a subgroup G_{2^n} of $G_{2^{2n}}$. A table of the operators of the latter may be formed with those of G_{2^n} in the first row and with the operators I, a_2, b_2, \cdots of a second G'_{2^n} as multipliers. We may choose $\Sigma = \Sigma_1 \Sigma_2$, where Σ_i permutes cyclically the $2^n - 1$ elements $a_i, b_i, a_i b_i, \cdots$, written in a suitable order. As the first set S_1 we take a_1, b_1, a_1b_1, \cdots ; as the second set S_2 we take a_2, b_2, \cdots . To form the third set S_3 , take any element, as a_1a_2 , in neither S_1 nor S_2 , and apply to it the powers of Σ ; there result a_1a_2, b_1b_2, \cdots . To form the i^{th} set take any element not in $S_1, S_2, \cdots, S_{i-1}$ and apply to it the powers of Σ . In this way we obtain $2^n + 1$ sets with the desired properties.

^{*} BULLETIN, vol. 2 (1895), pp. 33-43. † For n = 2, see Burnside, Theory of Groups, p. 60, ex. 2; errata, p. xvi.

[‡] Linear Groups, p. 236.