THE GROUP OF A TACTICAL CONFIGURATION.

BY PROFESSOR L. E. DICKSON.

(Read before the American Mathematical Society, December 29, 1904.)

1. A tactical configuration, connected with the abelian group $G_{p^{m}}$ of type $(1,1, \cdots, 1)_{m}$ and serving to define the general linear homogeneous group H modulo p on m variables, has been given by Professor Moore.* As an obvious generalization, consider the configurations defining the various subgroups of H. The example that I give had its origin in the following problem : \dagger Required the number N_{n} of all possible ways of separating the $2^{2 n}-1$ operators other than identity of $G_{2^{2 n}}$ into $2^{n}+1$ sets each of $2^{n}-1$ operators, such that the operators of any set together with identity form a subgroup $G_{2^{n}}$ and such that no two sets have a common operator. Here $G_{2^{2 n}}$ is assumed to be an abelian group of type $(1,1, \ldots, 1)_{2 n}$; for example, the group of all linear transformations on $2 n$ variables which multiply each variable by ± 1.
2. That such a separation is always possible is easily shown. The group of automorphisms of $G_{2^{2 n}}$ may be taken concretely as the group of all linear homogeneous transformations modulo 2 on $2 n$ variables. The latter contains \ddagger a transformation S whose characteristic equation of degree $2 n$ is irreducible modulo 2 , so that S is of period $2^{2 n}-1$. In particular, an operator Σ of period $2^{n}-1$ occurs. Let $I, a_{1}, b_{1}, a_{1} b_{1}, \cdots$ be the operators of a subgroup $G_{2^{n}}$ of $G_{2^{2 n}}$. A table of the operators of the latter may be formed with those of $G_{2^{n}}$ in the first row and with the operators I, a_{2}, b_{2}, \cdots of a second $G_{2^{n}}^{\prime}$ as multipliers. We may choose $\Sigma=\Sigma_{1} \Sigma_{2}$, where Σ_{i} permutes cyclically the $2^{n}-1$ elements $a_{i}, b_{i}, a_{i} b_{i}, \cdots$, written in a suitable order. As the first set S_{1} we take $a_{1}, b_{1}, a_{1} b_{1}, \cdots$; as the second set S_{2} we take a_{2}, b_{2}, \ldots. To form the third set S_{3}, take any element, as $a_{1} a_{2}$, in neither S_{1} nor S_{2}, and apply to it the powers of Σ; there result $a_{1} a_{2}, b_{1} b_{2}, \cdots$. To form the $i^{t h}$ set take any element not in $S_{1}, S_{2}, \cdots, S_{i-1}$ and apply to it the powers of Σ. In this way we obtain $2^{n}+1$ sets with the desired properties.
[^0]
[^0]: * Bulletin, vol. 2 (1895), pp. 33-43.
 \dagger For $n=2$, see Burnside, Theory of Groups, p. 60, ex. 2; errata, p. xvi. \ddagger Linear Groups, p. 236.

