Since $S_{1} T=c^{-1} b^{-1} c b c$ is the transform of c by $b c$, it is of period three.

The final relation (10) becomes

$$
\begin{aligned}
\left(b c^{-1} b^{-1} c \cdot b^{-1} c b c\right)^{2} & =\left(c^{-1} b c b^{-1} \cdot b^{-1} c b c\right)^{2}=\left(c^{-1} b c b^{2} c b c\right)^{2} \\
& =c^{-1} b\left(c b^{2}\right)^{4} b^{-1} c=I .
\end{aligned}
$$

Since S_{j} is commutative with S_{1}, the condition $S_{j}^{3}=I$ follows from $\left(b^{-1} c^{-1} b^{2} c^{-1}\right)^{3}=I$ or $\left(c b^{2} c b\right)^{3}=I$.

The University of Chicago,
December 11, 1902.

NOTE ON A PROPERTY OF THE CONIC SECTIONS.

BY PROFESSOR H. F. BLICHFELDT.
(Read before the San Francisco Section of the American Mathematical Society, December 20, 1902.)

It is easily proved that if P, Q, R are any three points on the conic $A x^{2}+B y^{2}=1$, and O the center of the conic, then the areas of the triangles $O P Q, O P R, O Q R$ will satisfy an equation independent of the position of the points P, Q, R. If a, b, c are the areas in question, this equation is

$$
\begin{equation*}
a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}-2 b^{2} c^{2}+16 A B a^{2} b^{2} c^{2}=0 \tag{1}
\end{equation*}
$$

Now we can prove that such an invariant relation is possible for no plane curves except the central conics ; i. e., if we seek a plane curve C and a point O in its plane such that, if P, Q, R are any three points on C, the triangles $O Q R, O R P, O P Q$ are connected by a relation independent of the coördinates of the points P, Q, R, we find C to be a central conic section and O its center.

To prove this theorem, let O be the origin of coördinates, and let the coördinates of P, Q, R be respectively $x_{1}, y_{1} ; x_{2}, y_{2}$; x_{3}, y_{3}. Then twice the areas of the three triangles are

$$
\begin{gathered}
2 a= \pm\left(r_{2} x_{3}-y_{3}^{\prime} x_{2}\right), \quad 2 b= \pm\left(y_{3} x_{1}-y_{1} x_{3}\right) \\
2 c= \pm\left(y_{1} x_{2}-y_{2} x_{1}\right)
\end{gathered}
$$

