THE ABSTRACT GROUP G SIMPLY ISOMORPHIC WITH THE ALTERNATING GROUP ON SIX LETTERS.

BY PROFESSOR L. E. DICKSON.

(Read before the American Mathematical Society, December 29, 1902.)

1. A slight correction of a theorem due to De Séguier* leads to the result that G is generated by three operators a, b, c, subject only to the relations

$$
\begin{array}{rlrl}
a^{2}=I, & b^{4}=I, & & c^{3}=I, \\
\left(a b^{-1} a b\right)^{3}=I, & & \left(a b^{-2} a b^{2}\right)^{2}=I \\
\left(c b^{-1} a b\right)^{2}=I, & & \left(c b^{-2} a b^{2}\right)^{2}=I \tag{3}
\end{array}
$$

But these generators are not independent, since

$$
\begin{equation*}
a=c b^{-1} c b c \tag{4}
\end{equation*}
$$

A simple verification of (4) results from the correspondence

$$
a \sim(12)(34), \quad b \sim(12)(3456), \quad c \sim(123)
$$

between the generators of the simply isomorphic groups.
It is shown in this section that G is generated by the two operators b and c, subject to the complete set of generational relations

$$
\begin{equation*}
b^{4}=I, \quad c^{3}=I, \quad\left(b^{-1} c b c^{-1}\right)^{2}=I, \quad\left(b^{2} c\right)^{4}=I \tag{5}
\end{equation*}
$$

These relations follow from (1), (2), (3); for, by the above correspondence, $b^{-1} c b c^{-1} \sim(14)(23), \quad b^{2} c \sim(1235)(46)$.

If a be defined by (4), relations (1), (2), (3) follow from (5).

$$
\begin{gathered}
a^{2}=c b^{-1} c b c^{-1} b^{-1} c b c=c\left(b^{-1} c b c^{-1}\right)^{2} c^{-1}=I \\
(a c)^{3}=c b^{-1} c^{3} b c^{-1}=I
\end{gathered}
$$

[^0]
[^0]: *Journal de Math., 1902, p. 262. For $y=2, \ldots, n-3$ in his formula (6 , should stand $y=1, \ldots, n-4$.

