1902.]

itself is commutative with every operator of G_i . Let H_1 be the commutator subgroup. The group $\{H_i, G_i\}$ is of order $p_1^{\beta} p_i^{\alpha_i}$. This contains $p_1^{\gamma}(\gamma \leq \beta)$ subgroups of order $p_i^{\alpha_i}$, and therefore $p_1^{\gamma} \equiv 1 \pmod{p_i}$. Hence if

$$p_i^{\gamma} \not\equiv 1 \pmod{p_i} \quad (0 < \gamma \leq \beta),$$

every commutator is commutative with every operator of G_i . Then $A_i^{-1}A_iA_i = A_it_i$, where A_i is any operator of

$$G_j \qquad (j=1,\,2,\,\cdots,\,n)$$

and A_i is any operator of G_i ; and $A_j^{-1}A_i^{p\beta_i}A_j = A_i^{p\beta_i}$, where $p_1^{\beta_i}$ is the order of t_i . But $p_1^{\beta_i}$ is relatively prime to p_i . Therefore $A_j^{-1}A_iA_j = A_i$, and G is the direct product of the groups G_j^{u} . THEOREM. If a group G of order $p_1^{-1}p_2^{\alpha_2}\cdots p_n^{\alpha_n}$ (p_1, p_2, \cdots, p .

THEOREM. If a group G of order $p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}(p_1, p_2, \cdots, p_n)$ being distinct primes) has a commutator subgroup of order p_1^{β} and if $p_1^{\gamma} \neq 1 \pmod{p_i} (0 < \gamma \leq \beta), (i = 2, 3, \cdots, n)$, then G is the direct product of groups of orders $p_1^{a_1}, p_2^{a_2}, \cdots, p_n^{a_n}$ respectively. CORNELL UNIVERSITY.

August, 1902.

NOTE ON IRREGULAR DETERMINANTS.

BY PROFESSOR L. I. HEWES.

IN Gauss's table * of binary quadratic forms the two negative determinants -468 and -931 of the first thousand are classed as regular and their genera and classes given correctly. Perott † has pointed out that these two determinants are irregular. The details of the classes of the original thirteen irregular determinants of Gauss have been worked out by Cayley ‡ and on the following page are given the details, in his notation, for the properly primitive reduced forms of the two determinants added by Perott's investigation.

^{*}C. F. Gauss, Werke, vol II, p 450.

^{† &}quot;Sur la formation des déterminants irreguliers," Crelle, vol. 59.

[‡] Cayley's Collected Papers, vol. 5, p. 141.