BULLETIN OF THE

AMERICAN MATHEMATICAL SOCIETY

SOME INSTRUCTIVE EXAMPLES IN THE CALCULUS OF VARIATIONS.

BY PROFESSOR OSKAR BOLZA.

(Read before the American Mathematical Society, September 2, 1902.)

In the following note I propose to give some examples which illustrate in a simple manner several points of fundamental importance in the calculus of variations.

§1. The General Problem and its Assumptions.

We consider the problem * to minimize the integral

$$I = \int_{x_0}^{x_1} F(x, y, y') dx$$
 (1)

under the following assumptions:

1. The function F(x, y, z) considered as a function of the three independent variables x, y, z is real and regular \dagger in the vicinity of every finite real point x = a, y = b, z = c for which x = a, y = b lies in a given region R of the xy-plane.

2. The functions y = f(x) admitted to consideration satisfy the following conditions:

(a) For the given end values $x = x_0$, $x = x_1$, y takes the given values $y = y_0$ and $y = y_1$ respectively, i. e., the "curves" y = f(x) pass through two given points $A: (x_0, y_0)$ and $B: (x_1, y_1)$;

^{*} Compare for the formulation of the problem Osgood's article "Sufficient conditions in the calculus of variations," Annals of Math., 2nd ser., vol. 2 (1901), p. 105. We deviate, however, in several points from Osgood's assumptions.

 $[\]dagger i$. e. developable into an ordinary power series in x - a, y - b, z - c.