we shall have the definition given by H . Weber, loc. cit. That these postulates $1,2,3^{\prime}, 4^{\prime}, 5 a$ are mutually independent (when $n>2$) has already been shown in the writer's previous paper (page 300).

It should be noticed, however, that postulates $1,2,3^{\prime}, 4^{\prime}$, $5 b$ would not be sufficient to define an infinite group, since the system of positive integers, with $a \circ b=a+b$, satisfies them all, and is not a group.

Harvard University,
Cambridge, Mass.

DETERMINATION OF ALL THE GROUPS OF ORDER p^{m}, p BEING ANY PRIME, WHICH CONTAIN THE ABELIAN GROUP OF
 ORDER p^{m-1} AND OF TYPE ($1,1,1, \cdots$).
 BY PROFESSOR G. A. MILLER.

(Read before the San Francisco Section of the American Mathematical Sóciety, May 3, 1902.)
Let $t_{1}, t_{2}, \cdots, t_{m-1}$ represent a set of independent generators of the abelian group H of type (1, 1, 1, \cdots). It is well known that the order of the group of isomorphisms is of H is $\frac{(m-1)(m-2)}{2}$
$p^{\frac{2}{2}}(p-1)\left(p^{2}-1\right) \cdots\left(p^{m-1}-1\right)$. One of its subgroups ϑ_{1} of order $p^{\frac{(m-1)(m-2)}{2}}$ is composed of all the operators of ϑ which correspond to the holomorphisms of H in which $t_{\alpha}(\alpha=2,3, \cdots, m-1)$ corresponds to itself multiplied by some operator in the group generated by t_{1}, t_{2}, \cdots, t_{a-1}. The number of conjugates of ϑ_{1} under $\%$ is clearly
 equal to the order of ϑ divided by $p^{\frac{1}{2}}(p-1)^{m-1}$.
We shall first determine the number of sets of subgroups of ϑ_{1} which are conjugate under ϑ. It may be observed that even characteristic subgroups of ϑ_{1} may be conjugate under ϑ. For instance, the octic group has a characteristic subgroup of order two and four other subgroups of this order, yet all of these subgroups are conjugate under ϑ when the latter is the simple group of order 168.

All the holomorphisms of H may be obtained by establishing isomorphisms between H and its subgroups and letting the product of two corresponding operators in these isomorphisms correspond to the original operator of H.*

[^0]
[^0]: * Bulletin, vol. 6 (1900), p. 337.

