we shall have the definition given by H. Weber, loc. cit. That these postulates 1, 2, 3', 4', 5a are mutually independent (when n > 2) has already been shown in the writer's previous paper (page 300).

It should be noticed, however, that postulates 1, 2, 3', 4', 5b would not be sufficient to define an *infinite* group, since the system of positive integers, with $a \circ b = a + b$, satisfies them all, and is not a group.

HARVARD UNIVERSITY. CAMBRIDGE, MASS.

DETERMINATION OF ALL THE GROUPS OF ORDER p^m , p BEING ANY PRIME, WHICH CONTAIN THE ABELIAN GROUP OF ORDER p^{m-1} AND OF TYPE $(1, 1, 1, \dots).$

BY PROFESSOR G. A. MILLER.

(Read before the San Francisco Section of the American Mathematical Society, May 3, 1902.)

Let t_1, t_2, \dots, t_{m-1} represent a set of independent generators of the abelian group H of type $(1, 1, 1, \dots)$. It is well known that the order of the group of isomorphisms ϑ of H is $\frac{(m-1)(m-2)}{2}$

 $p^{\frac{(m-1)}{2}} (p-1) (p^2-1) \cdots (p^{m-1}-1).$ One of its subgroups ϑ_1 of order $p^{\frac{(m-1)(m-2)}{2}}$ is composed of all the opera-

tors of ϑ which correspond to the holomorphisms of \hat{H} in which $t_a \ (a = 2, 3, \dots, m-1)$ corresponds to itself multiplied by some operator in the group generated by t_1, t_2, \cdots , The number of conjugates of ϑ_1 under ϑ is clearly t_{a-1} . $\frac{(m-1)(m-2)}{2}$ equal to the order of ϑ divided by p $(p-1)^{m-1}$. We shall first determine the number of sets of subgroups of

 ϑ_1 which are conjugate under ϑ . It may be observed that even characteristic subgroups of ϑ_1 may be conjugate under 9. For instance, the octic group has a characteristic subgroup of order two and four other subgroups of this order, yet all of these subgroups are conjugate under ϑ when the latter is the simple group of order 168.

All the holomorphisms of H may be obtained by establishing isomorphisms between H and its subgroups and letting the product of two corresponding operators in these isomorphisms correspond to the original operator of H.*

^{*} BULLETIN, vol. 6 (1900), p. 337.