CONCERNING THE ANGLES AND THE ANGULAR DETERMINATION OF PLANES IN 4-SPACE.

BY DR. C. J. KEYSER.

(Read before the American Mathematical Society, April 26, 1902.)

I. Introductory: Angles of Two Planes.

Ir has been established by Jordan* that, if two linear point spaces S_{a} and $S_{a}{ }^{\prime}$, each of $n-\alpha$ dimensions, in a linear point space of n dimensions, have one and but one point in common, S_{α} and S_{a}^{\prime} form α angles. In the special case where $n=4$ and $\alpha=2, S$ and S^{\prime} denote two planes of 4 space, and, as two planes in 4 -space have one and in general but one common point, it follows that two planes of 4 -space form two angles. That such is the case can be readily seen independently of the general theorem mentioned, in either of the following reciprocal ways: Two planes π and π^{\prime} may be conceived as two flat pencils of lines having the common point P of the planes as common vertex. Of all the angles formed by lines of the one pencil with lines of the other there is a least angle θ, and this is not zero since by hypothesis the pencils have no line in common. Denote by $\pi^{\prime \prime}$ the plane determined by the lines l and l^{\prime} where the latter belong respectively to π and π^{\prime} and form the angle θ. As the planes π^{\prime} and $\pi^{\prime \prime}$ have the line l^{\prime} in common, they form an ordinary angle α. In order to bring π and π^{\prime} into coincidence, it is sufficient to turn l^{\prime} in $\pi^{\prime \prime}$ through the angle θ and then, as l and l^{\prime} now coincide and π and π^{\prime} have a common line, to rotate π or π^{\prime} through the ordinary angle ω formed by π with π^{\prime} in its new position. Reciprocally, π and π^{\prime} may be regarded as pencils of lineoids \dagger (ordinary 3 -spaces). Either plane will accordingly be determined by any pair of its generating lineoids, i.e., the lineoids enveloping or containing it. The planes π and π^{\prime} have no common lineoid, for otherwise they would have, contrary to hypothesis, a common line. A ccordingly there is a minimal angle φ, not zero, in the assemblage of angles formed by lineoids of the one plane with those of the other. Denote by $\pi^{\prime \prime}$ the plane determined by L and L^{\prime}, where L and L^{\prime} are lineoids of π and π^{\prime} respectively and

[^0]
[^0]: * Jordan: "Essai sur la qéométrie à n dimensions," Bull. de la Soc. Math. de France, vol. 3, p. 129.
 \dagger Cf. Cole: "On rotations in space of four dimensions," Amer. Jour. of Muth., vo'. 12.

