NOTE ON ISOTROPIC CONGRUENCES.

BY DR. L. P. EISENHART.

(Read before the American Mathematical Society, December 28, 1901.)
Consider a sphere S of radius unity and center at the origin of coördinates, and a surface S_{1} corresponding to S by orthogonality of linear elements. By a theorem of Ribaucour $*$ we know that S_{1} is the mean surface of an isotropic congruence C. If S_{1} is taken to define an infinitesimal deformation of S, the associate \dagger surface in this deformation will be a minimal surface $S_{2} ; \ddagger$ then S and S_{2} correspond by parallelism of tangent planes at corresponding points. Moreover, if the reciprocal character of the relation existing between these latter two surfaces is noted, and S is considered as the associate in the deformation of S_{2}, then the surface S_{3} corresponding to S_{2} with orthogonality of linear elements is the adjoint minimal surface of S_{2}.

Darboux has shown \S that the following relations exist between the cartesian coordinates of these four surfaces:

$$
\begin{align*}
& x_{1}=x_{3}-y_{2} z+z_{2} y \\
& y_{1}=y_{3}-z_{2} x+x_{2} z \tag{1}\\
& z_{1}=z_{3}-x_{2} y+y_{2} x .
\end{align*}
$$

Let S be referred to its asymptotic lines; then S_{2} and S_{3} will be referred to the double system of lines which is conjugate for each || As the latter are adjoint minimal surfaces, this double system is.made up of the lines of length zero on each surface. Weierstrass has shown $* *$ that the coördinates of S_{3} can be expressed as the following functions of u and v, parameters referring to the lines of length zero :

$$
\begin{aligned}
x_{3} & =\frac{1-u^{2}}{2} f^{\prime \prime}(u)+u f^{\prime}(u)-f(u) \\
& +\frac{1-v^{2}}{2} f_{1}^{\prime \prime}(v)+v f_{1}^{\prime}(v)-f_{1}(v)
\end{aligned}
$$

[^0]
[^0]: * Étude des Elassoïdes, chap. 8 (Mémoire couronné par l'Academie de Belgique) ; Darboux, vol. 4, p. 15.
 + Bianchi, p. 279.
 \ddagger Darboux, vol. 4, p. 96.
 ${ }_{8}$ Ibid., p. 66.
 $\|$ Bianchi, p. 284.
 ** Darboux, v ol. 1, p. 289.

