The following is a summary of Dr. Porter's paper : Consider 3m - s - 1 arbitrary fixed points P on a non-singular cubic C_3 , and $u_i = \int_{ab}^{x_i y_i} du$ the integral of first kind on C_s , (ab) being a point of inflexion. If an *m*-ic have a s - 1 order contact at u_1 , it will cut C_3 again at u_2 , $su_1 + u_2 \equiv C$ (mod. ω , ω') where $C = \Sigma u_i$ at the points P: The Schliessungsproblem thus suggested yields at once a proof of Fermat's theorem $a^n - a \equiv 0 \pmod{n}$ (mod. $n \pmod{n}$) and the generalized form of the theorem $F(a, n) \equiv 0 \pmod{n}$. Nhen m = 1, s = 2, we have systems of closed polygons. In case the polygon is a triangle, the equation of C_3 referred to it may be written

$$\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + 2\eta = 0.$$

The twenty-four in-circumscribed triangles thus determined fall into four groups, each associated with an inflexion triangle, and each triangle of a group six ways perspective with its associate inflexion triangle. This configuration of inflexion triangles and in-circumscribed triangles presents numerous interesting geometrical properties.

COLUMBIA UNIVERSITY.

F. N. Cole.

THE UNDERGRADUATE MATHEMATICAL CURRICULUM.

REPORT OF THE DISCUSSION AT THE SEVENTH SUMMER MEET-ING OF THE AMERICAN MATHEMATICAL SOCIETY.

THE final session of the Seventh Summer Meeting of the Society was devoted to an organized discussion of the following question :

What courses in mathematics shall be offered to the student who desires to devote one-half, one-third, or one-fourth of his undergraduate time to preparation for graduate work in mathematics?

The following topics were also suggested as a general basis of discussion :

How early in the course may the lecture method be used with profit?