$w x u$ and $y z u$ then the joining line of the two remaining points of intersection of the sextics so determined will meet F elsewhere in the two lines $w x$ and $y z$.

Cornell University,
February, 1900.

NO'SE ON THE GROUP OF ISOMORPHISMS.

BY DR. G. A. MILLER.

(Read before the American Mathematical Society, February 24, 1900.)
Let $s_{1}, s_{2}, \cdots, s_{g}$ represent all the operators of a group G and let $t_{a} s_{\alpha}$ correspond to $s_{\alpha}(\alpha=1,2, \cdots, g)$ in any given simple isomorphism of G with itself. It is evident that t_{a} is some operator of G. When G is abelian these t_{a} 's must constitute a group T which is isomorphic with G.* In this isomorphism, t_{α} evidently can not be the inverse of s_{α} unless $s_{\alpha}=1$. As this condition is sufficient as well as necessary, we have

Theorem I.-Every simple isomorphism of an abelian group A with itself may be obtained by 1° making A isomorphic with one of its subgroups or with itself in such a manner that no operator corresponds to its inverse, and 2° making each operator of A correspond to itself multiplied by the operator which corresponds to it in the given isomorphism.

The simplest case that can present itself is the one in which the subgroup of G, which corresponds to identity of T in the given isomorphism between G and T, includes T. The resulting simple isomorphism of G with itself must correspond to an operator in the group of isomorphisms of G, whose order is equal to the operator of highest order in T. When the order of T is an odd prime number p, or the double of an odd prime, only one other case can present itself ; viz, the case in which T corresponds to itself, or to its subgroup of an odd prime order, in the given isomorphism between G and T. The resulting simple isomorphism of G with itself may clearly correspond to a cyclical group of order $p-1$, or to any one of its subgroups in the group of isomorphisms of G. These results lead to the following

[^0]
[^0]: * When G is non-abelian, these t_{a} 's need not constitute a group, as can be seen from the simple isomorphisms of the symmetric group of order 6 with itself.

