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with the smaller real part can be developed by the method of succes-
sive approximations exactly as the solution corresponding to the ex-
ponent with the larger real part is developed in my article in the
Transactions, provided that Rx <1 — k, where x is the differ-
ence of the exponents at x = 0 so taken that Rx > 0.

By using this theorem we deduce the

Seconp THEOREM OF COMPARISON :  If the conditions of the
Sirst theorem of comparison are fulfilled, and if moreover both equa-
tions have the same exponents, and both satisfy restriction (A) ;
and if y, and y, are the solutions corresponding to the smaller ex-
ponent ; and if y, vanishes when x = x, > 0, but not in the inter-
val 0 << x <z, then y, will vanish ot least once in this interval
provided that x <1 — k.

Finally I should like to mention a fact which had escaped
my notice until after my paper in the Transactions was
printed, namely that the class of singular points which I
there discuss under the name regular can be brought into
very close connection with the class of singular points pre-
viously studied by Kneser ( Crelle’s Journal, Volumes 116,117,
120 ; Mathematische Annalen, Volume 49). This can be done
by replacing the independent variable x, which I use, by
z where x = ¢~ % Although many of my results can be de-
duced by this method from those previously found by Kneser
and vice versa, the results in the two cases are by no means
coextensive, nor does either include the other. I shall come
back to this matter more at length on a subsequent occa-
sion. It may be noted that the method of successive ap-
proximations can also be applied directly to Kneser’s case.
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In the May number of the BuLLETIN for 1897, the writer
gave a solution of the problem of enumerating the real roots
of F(a, B, v, ) between zero and one which depended on
two well known theorems of Sturm—there referred to as [A]



