ON A DEFINITIVE PROPERTY OF

THE COVARIANT.

BY MR. C. J. KEYSER.

(Read before the American Mathematical Society at the Meeting of April 29, 1899.)

The general homogeneous entire polynomial of degree n in k variables x may be denoted by

$$
F_{n}\left(x_{1}, x_{2}, \cdots, x_{k}\right) \equiv \sum c_{e_{1} e_{2} \cdots e_{k}} x_{1}{ }_{1}{ }_{1} x_{2}^{e_{2}} \cdots x_{k}^{e_{k}}
$$

where $e_{1}+e_{2}+\cdots+e_{k}=n$. Let

$$
\varphi_{n}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{k}\right) \equiv \sum \gamma_{e_{1} e_{2}, \cdots e_{k}} \xi_{1}{ }_{1} \varepsilon_{2} \xi_{2}^{e_{2}} \cdots \xi_{k}{ }^{e} k
$$

represent the polynomial into which F is converted by the substitutions

$$
\begin{aligned}
& x_{1}=\lambda_{11} \xi_{1}+\lambda_{12} \xi_{2}+\cdots+\lambda_{1 k} \xi_{k}, \\
& x_{2}=\lambda_{21} \xi_{1}+\lambda_{22} \xi_{2}+\cdots+\lambda_{2 k} \xi_{k}, \\
& \cdots \\
& x_{k}=\lambda_{k 1} \xi_{1}+\lambda_{k 2} \xi_{2}+\cdots+\lambda_{k k} \xi_{k},
\end{aligned}
$$

where the λ 's are subject to a single restriction : their determinant D shall not assume the value zero.

If there is such an entire homogeneous polynomial

$$
\psi_{m}\left(x_{1}, x_{2}, \cdots, x_{k}\right) \equiv \sum h_{e_{1} e_{2} \ldots e_{k}} x_{1}^{e_{1} x_{2} e_{2} \cdots x_{k}{ }^{e_{k}},}
$$

where $e_{1}+e_{2}+\cdots+e_{k}=m$ and where each coefficient h is an entire homogeneous polynomial of degree p in the coefficients c of F, that

$$
\psi_{m}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{k}\right) \equiv M \cdot \psi_{m}\left(x_{1}, x_{2}, \cdots x_{k}\right),
$$

the γ 's entering the left member of the identity as the c 's enter ψ_{m} of the right member, then $\psi_{m}\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ is named covariant or invariant of F according as $m>0$ or $=0$.

Supposing such a function ψ to exist, it remains to determine the nature of the factor M. The ξ 's and the r 's being linear respectively in the x 's and the c 's, the two members of the identity in question are, apart from the factor M, each of degree m in the x 's and of degree p in the c 's. It follows that M is a function of the λ 's only. M is, more-

