1898.] LOCUS CONNECTED WITH COAXIAL CIRCLES.

Further, formula (9) of §11 becomes for q = m - 2

$$\left| \begin{array}{c} i_{1}i_{2}\cdots i_{m-2} \\ j_{1}i_{2}\cdots j_{m-2} \end{array} \right|_{A} = D^{m-3} \left| \begin{array}{c} i_{m-1}i_{m} \\ j_{m-1}j_{m} \end{array} \right|_{A}.$$

Hence the transformation (12) takes the form*

(12₁)
$$W_{i_{m-1}i_m} = D^{\frac{m-4}{2}} \sum_{\substack{j_{m-1}j_m \\ j_{m-1}j_m}}^{1,\dots,m} \left| \frac{i_{m-1}i_m}{j_{m-1}j_m} \right|_a W_{j_{m-1}j_m}.$$

18. We may enunciate the results proven in \$\$16-17 for the individual transformations of the groups concerned :

To any given transformation (a_{ij}) of determinant D of the general m-ary linear homogeneous group G_m , there corresponds a transformation $[a]_{m-2}$ of the $(m-2)^d$ compound $C_{m,m-2}$ which gives rise to a linear transformation upon its system of Pfaffian invariants, viz:

1°: for m odd, the m-ary transformation,

$$\overline{F'_i} = D^{\frac{m-3}{2}} \sum_{j=1}^m a_{ij} \overline{F_j} \qquad (i=1, \dots, m),$$

which for D = 1, is precisely the given transformation of G_m .

2°. for m even, the $\frac{1}{2}m(m-1)$ -ary transformation (12) or (12₁), where, for D = 1, (12₁) belongs to the second compound of G_m , and (12) to the $(m-2)^d$ compound of the $(m-1)^{st}$ compound of G_m .

UNIVERSITY OF CALIFORNIA, August 9, 1898.

A SECOND LOCUS CONNECTED WITH A SYSTEM OF COAXIAL CIRCLES.

BY PROFESSOR THOMAS F. HOLGATE.

(Read before the American Mathematical Society at its Fifth Summer Meeting, Boston, August 19, 1898.)

In a paper read before this Society at its Toronto Meeting and published in the BULLETIN for November, 1897, I

* We may verify (12_1) directly, using the method of § 6 for q=2. The

presence of the factor $D^{\frac{m-2}{2}}$ influences only the transformations $A_{kk'}$. There occurs, however, some difficulty as to signs in passing from the W's to the F's. Likewise the results of &&11-14 could doubtless be proved by the method of &6.

135