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That V(z, y) thus defined is harmonic follows at once
from (3) since 5; is easily seen, either by direct computa-
tion or from its value :
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to be a harmoniec function of (z, y).

For the proof of the second part of the theorem formula
(2) is particularly adapted. We have here to prove that
it (=, y) approaches a point P on the circumference V(z, y)
approaches asits limit the value of V_ at P. The idea upon
which this proof rests is that when (z, y) is near to Pa
small arc including P corresponds to a large range of values
of ¢ and, therefore, when we take the arithmetic mean as
indicated in (2) the value of V, at P will predominate.*
The exact proof based upon the idea just stated merely re-
quires the writing down of a few inequalities.
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By a Stieltjes polynomial will here be understood any
polynomial satisfying a regular linear differential equation
of the second order
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in which the singular points e, -, ¢, o0 are real and in which

also r exponent-differences 4,, -+, A are (algebraically) less
than unity. We shall here for the most part confine our
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* It will be seen that this idea is similar to that suggested by Schwarz.
(Ges. Werke, vol. 2, p. 360. See also Klein-Fricke : Modulfunctionen,

vol. 1, p. 512.) We avoid, however, the artificiality of Schwarz’s
method.



