equal to the normal upon the corresponding principal directrix plane. And the normal to the surface at the point bisects the exterior angle of the two lines.

In an hyperbolic paraboloid, for any point on the surface, the difference between the focal distances to the foci of the two focal parabolas is a constant. And the normal to the surface at the point bisects the exterior angle of the two lines.

The reader of this book will hope with Professor Staude " that the focal properties of the conicoid will attain the same recognition that the corresponding properties in the plane have long since enjoyed."

H. D. Thompson.

Princeton,
February 25, 1898.

NOTE ON THE THEORY OF CONTINUOUS GROUPS.

In a "Note on the fundamental theorems of Lie's theory of eontinuous groups," contributed to the Bulletin in November, 1897, by Dr. Lovett, attention is drawn to an error or misapprehension in a paper which I had the honor of contributing to the Proceedings of the Lonulon Mathematical Society (vol. 23, p. 381-390).

The theorem to which objection is taken is: "If x_{1} ', \ldots, x_{n} ' is a point obtained from the point x_{1}, \cdots, x_{n} by the operation

$$
1+X+\frac{X^{2}}{2!}+\cdots
$$

and $x_{1}{ }^{\prime \prime}, \ldots, x_{n}{ }^{\prime \prime}$ is a point obtained from the point $x_{1}{ }^{\prime}, \ldots, x_{n}{ }^{\prime}$ by the operation

$$
1+Y^{\prime}+\frac{Y^{\prime 2}}{2!}+\cdots
$$

where

$$
X \equiv \lambda_{1} X_{1}+\cdots+\lambda_{r} X_{r},
$$

and

$$
Y \equiv \mu_{1} X_{1}+\cdots+\mu_{r} X_{r},
$$

X_{k} denoting the linear operator

$$
\sum_{i=1}^{i=n} \xi_{k i}\left(x_{1}, \cdots, x_{n}\right) \frac{\partial}{\partial x_{i}}
$$

then $x_{1}{ }^{\prime \prime}, \ldots, x_{n}{ }^{\prime \prime}$ can be directly derived from the point x_{1}, \cdots, x_{n} by the operation

