substitutions have the same composition formula as linear fractional substitutions. Hence, according as -1 is a square or a not-square, H^{\prime} is simply isomorphic to the "real" or the "imaginary" form* of the group of linear fractional substitutions of determinant unity. Thus, for $p^{n}>3, H^{\prime}$ is simple.
15. Observing that the squares of the substitutions

$$
O_{1,2}^{a, \beta}, \quad O_{1,2}^{a, \beta} T_{13} C_{1} C_{2} C_{3}, \quad O_{1,2}^{\alpha, \beta} \quad T_{13} T_{24}
$$

are respectively $Q_{1,2}^{\alpha,-\beta}, \quad O_{1,2}^{\alpha, \beta} O_{3,2}^{\alpha, \beta}, \quad O_{1,2}^{\alpha, \beta} O_{3,4}^{\alpha, \beta}$, we may unite our results into the following

Theorem : The squares of the linear substitutions on m indices in the $G F\left[p^{n}\right], p \neq 2$, which leave invariant the sum of the squares of the m indices, generate a group, which for $m=2 k+1$ has the order

$$
\frac{1}{2}\left(p^{2 n k}-1\right) p^{2 n k-n}\left(p^{2 n k-2 n}-1\right) p^{2 n k-3 n} \cdots\left(p^{2 n}-1\right) p^{n}
$$

and is simple except when $p^{n}=3, m=3$; while for $m=2 k>4$ it has the factors of composition 2 and

$$
\frac{1}{4}\left[p^{n k}-(\pm 1)^{k}\right] p^{n k-n}\left(p^{2 n k-2 n}-1\right) p^{2 n k-3 n} \cdots\left(p^{2 n}-1\right) p^{n}
$$

the sign \pm depending upon the form $4 l \pm 1$ of p^{n}.
University of California, February 10, 1898.

A PROOF OF THE THEOREM :

$$
\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}
$$

BY MR. J. K. WHITTEMORE.
(Read before the American Mathematical Society at the Meeting of April 30, 1898.)

Theorem : Let $u=f(x, y)$ denote a function of the two independent variables x and y which, together with its first derivatives and the two second derivatives in question, is continuous in the neighborhood of the point (x, y); then $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$

Let $\frac{\partial^{2} f(x, y)}{\partial x \partial y}$ denote $\frac{\partial}{\partial x}\left(\frac{\partial f(x, y)}{\partial y}\right)$

[^0]
[^0]: * Moore : Mathematical Papers of the Chicago Congress (1893), "A doubly-infinite system of simple groups," 8% 5-6.

