1898.]

329

where

$$a = \sqrt{b^2 - c^2}, \quad \beta = \sqrt{c^2 - a^2}, \quad \gamma = \sqrt{a^2 - b^2}.$$

Transform to a new system of coördinates x_1, x_2, x_3, x_4 , by means of the equations

$$\begin{split} x_1 &= (c-b) \left[aa\beta x - (b\beta^2 - c\gamma^2)y + iaca\gamma w \right], \\ x_2 &= (b+c) \left[aa\beta x - (b\beta^2 + c\gamma^2)y + iaca\gamma w \right], \\ x_3 &= (a+c) \left[aax - b\beta y + c\gamma z \right], \\ x_4 &= (c-a) \left[aax - b\beta y - c\gamma z \right]. \end{split}$$

With respect to this new system, the coördinates of the six chosen nodes are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 1), (e_1, e_2, e_3, e_4) , (e_2, e_1, e_4, e_3) , where

$$\begin{split} e_1 &= \beta \; (b^2 - c^2) \; (c-a), \quad e_3 = (a^2 - c^2) \; (c+b), \\ e_2 &= \beta \; (b^2 - c^2) \; (c+a), \quad e_4 = (a^2 - c^2) \; (c-b). \end{split}$$

These six points form an involution of the kind described. (See Annals of Mathematics, vol. 11, p. 159.)

NOTE ON INTEGRATING FACTORS.

BY MR. PAUL SAUREL.

(Read before the American Mathematical Society at the Meeting of February 26, 1898.)

IF the differential equation

$$X_1 dx_1 + X_2 dx_2 + \dots + X_n dx_n = 0, \quad n \equiv 3,$$
 (A)

be integrable, and if u = constant be the integral of this equation, then, as is well known, there exists a function M such that

$$du \equiv MX_1 dx_1 + MX_2 dx_2 + \dots + MX_n dx_n.$$

And as

$$rac{\partial u}{\partial x_1}\equiv MX_1, \ \ rac{\partial u}{\partial x_2}\equiv MX_2, ... \ rac{\partial u}{\partial x_n}\equiv MX_n,$$