G_{a} is of the same form. Hence it remains only to consider the number of those which have no operator besides identity in common with G_{a}.

All these subgroups may be divided into two classes, viz : (1) those which are transformed into themselves by G_{α}, and
(2) those which are transformed into different groups by the operators of G_{a}. The number of the former class may evidently be written in the form $a p+b q, a$ and b being positive integers. If a group of the latter class occurs, all its operators must be commutative to every operator of $G_{a} *$ and hence $r>p(q-1)$. In this case the given theorem is evidently true. It may be observed that the number of self-conjugate subgroups of G is not necessarily of the given form, e. g., the direct product of two non-commutative groups of order 21 contains only two self-conjugate subgroups of this order.

Cornell University, February, 1898.

NOTE ON THE TETRAHEDROID.

BY DR. J. I. HUTCHINSON.
(Read before the American Mathematical 'ociety at the Meeting of February $26,1898$.)

In a brief paper, "A special form of a quartic surface," Annals of Mathematics, vol. 11, p. 158, I have called attention to an interesting special form of the locus of the vertex of a cone passing through six points. I wish to point out in this note the connection between this special surface and the tetrahedroid.

Given six arbitrary points in space $1,2,3,4,5,6$. These determine a system of ∞^{3} quadric surfaces each of which pass through the six points. Denote this configuration by Σ.

Choose any arbitrary point P and consider the polar planes of P with respect to the system of quadrics. There are determined in this way ∞^{3} planes forming a configuration Σ_{1}.

To a quadric in Σ corresponds a plane in Σ_{1}. The vertices of the cones of Σ have for locus a surface K of the fourth order. The planes of Σ_{1} corresponding to the cones of Σ envelope a Kummer surface. The point in each plane corresponding to the cone vertex is the point of tangency.

[^0]
[^0]: * Dyck, Mathematische Annalen, vol. 22, p. 97.

