G_a is of the same form. Hence it remains only to consider the number of those which have no operator besides identity in common with G_a .

All these subgroups may be divided into two classes, viz: (1) those which are transformed into themselves by G_a , and (2) those which are transformed into different groups by the operators of G_a . The number of the former class may evidently be written in the form ap + bq, a and b being positive integers. If a group of the latter class occurs, all its operators must be commutative to every operator of $G_a *$ and hence r > p(q-1). In this case the given theorem is evidently true. It may be observed that the number of self-conjugate subgroups of G is not necessarily of the given form, e. g., the direct product of two non-commutative groups of order 21 contains only two self-conjugate subgroups of this order.

CORNELL UNIVERSITY, February, 1898.

NOTE ON THE TETRAHEDROID.

BY DR. J. I. HUTCHINSON.

(Read before the American Mathematical Cociety at the Meeting of February 26, 1898.)

IN a brief paper, "A special form of a quartic surface," Annals of Mathematics, vol. 11, p. 158, I have called attention to an interesting special form of the locus of the vertex of a cone passing through six points. I wish to point out in this note the connection between this special surface and the tetrahedroid.

Given six arbitrary points in space 1, 2, 3, 4, 5, 6. These determine a system of ∞^3 quadric surfaces each of which pass through the six points. Denote this configuration by Σ .

Choose any arbitrary point P and consider the polar planes of P with respect to the system of quadrics. There are determined in this way ∞^3 planes forming a configuration Σ_1 .

To a quadric in Σ corresponds a plane in Σ_1 . The vertices of the cones of Σ have for locus a surface K of the fourth order. The planes of Σ_1 corresponding to the cones of Σ envelope a Kummer surface. The point in each plane corresponding to the cone vertex is the point of tangency.

1898.]

^{*} Dyck, Mathematische Annalen, vol. 22, p. 97.