7. As in $\S 210, p^{2 n}+4 p^{n}-1$, being relatively prime to p, must divide $\left(p^{3 n}-1\right)\left(p^{2 n}-1\right)$ and thus also $4 p^{n}\left(p^{3 n}-1\right)$ and hence* $4\left(17 p^{n}-5\right)$ and hence divides

$$
20\left(p^{2 n}+4 p^{n}-1\right)-\left(68 p^{n}-20\right)=p^{n}\left(20 p^{n}+12\right)
$$

Hence $\left(p^{n}+2\right)^{2}-5$ must divide 304 , since

Thus

$$
\begin{gathered}
3\left(68 p^{n}-20\right)+5\left(20 p^{n}+12\right)=304 p^{n} . \\
p^{n}+2<18>\sqrt{ } 309 .
\end{gathered}
$$

But $p^{n}=13,11,9,5,3$ are readily excluded; while $p^{n}=7$ yields 76 a divisor of 304 and indeed of $\left(7^{3}-1\right)\left(7^{2}-1\right)$, but is excluded since -1 is a non-residue of 7 .
8. With the hypothesis of Jordan $\S 211$, that $a^{2}+b^{2}+c^{2}=0$, etc., we have $a^{2}=b^{2}=\cdots$. Hence $3 a^{2}=3 b^{2}=\cdots=0$ and $m a^{2}=1$. Thus either $a^{2}=b^{2}=\cdots=1$ or $2 a^{2}=2 b^{2}=\cdots=1$, when $1-a^{2}=a^{2}=$ square.

University of California,
November 20, 1897.

WEBER'S ALGEBRA.

Lehrbuch der Algebra. By Heinrich Weber, Professor of Mathematics in the University of Strassburg. Braunschweig, Friedrich Vieweg und Sohn. 1895-96. 8vo. Vol. I., pp. 653 ; Vol. II., pp. 796.
For some years the need of a thoroughly modern textbook on algebra has been seriously felt. The great strides that algebra has taken during the last twenty-five years, in almost all directions, have made Serret's classical work more and more antiquated, while modern books like Petersen's and Carnoy's make no claims to give a large and comprehensive survey of the subject. The appearance of any book modelled on the same broad plan as Serret's Algèbre Supérieure would thus be greeted with a hearty welcome, but when written by such a master as Heinrich Weber, we greet it with expressions of sincerest joy and satisfaction.

As Weber himself tells us, he has cherished for years the plan of this great undertaking; but before deciding to execute it he has traversed in his university lectures many times this vast domain as a whole, and has treated various parts separately with greater detail. No wonder, then, that

[^0]
[^0]: * Jordan has $68 p-12$, thus losing the divisor 76.

