THE DECOMPOSITION OF MODULAR SYSTEMS OF RANK *n* IN *n* VARIABLES.

(Presented to the Chicago Section of the American Mathematical Society, April 24, 1897.)

BY PROFESSOR ELIAKIM HASTINGS MOORE.

I.

THEOREM A. If in the realm \mathfrak{R} of integrity-rationality $\mathfrak{R} = [x_1, \dots, x_n] \ (\mathfrak{R}'_1, \dots, \mathfrak{R}_{\nu'})$, where the $x_1 \cdots x_n$ are independent variables and the realm $\mathfrak{R}' = (\mathfrak{R}'_1, \dots, \mathfrak{R}_{\nu'})$ is independent of the $x_1 \cdots x_n$, the modular system

(1)
$$\mathfrak{L} = [L_1[x_1, \dots, x_n], \dots, L_m[x_1, \dots, x_n]]$$

is contained in the coefficient modular system F

(2)
$$\mathfrak{F} = \left[\cdots, \mathfrak{f}_{k_1, \dots, k_n}, \cdots \right]$$

of the form

(3)
$$F[u_{1}, \dots, u_{n}] = \sum_{k_{1} \dots k_{n} + t} f_{k_{1} \dots k_{n}} u_{1}^{k_{1}} \dots u_{n}^{k_{n}}$$
$$= \prod_{h=1, s} (\sum_{i=1, n} (x_{i} - \xi_{hi}) u_{i}^{s})^{h} \qquad (t = \sum_{h=1, s} e_{h})$$

where the $f_{k_1...k_n} = f_{k_1...k_n} [x_1, \cdots, x_n]$ belong to \mathfrak{R} and the ξ_{ni} belong to \mathfrak{R}' or to a family-realm containing \mathfrak{R}' , and where the s linear forms $\sum_{i=1,n} (x_i - \xi_{ni}) u_i (h = 1, 2, \cdots, s)$ are distinct, then in the realm $\mathfrak{R}^* = [x_1, \cdots, x_n] (\mathfrak{R}'_1, \cdots, \mathfrak{R}'_{\nu}, \xi_{ni} \stackrel{h=1,2}{\leftarrow} \ldots \stackrel{s}{\rightarrow})$ the system \mathfrak{L} decomposes (in the sense of equivalence) into relatively prime factors $[\mathfrak{L}, \mathfrak{D}_n^{\circ h}]$,

(4)
$$\mathfrak{L} \sim \prod_{h=1, s} [\mathfrak{L}, \mathfrak{D}_{h}^{e_{h}}],$$

where $\mathfrak{D}_{h} = [x_1 - \xi_{h1}, \cdots, x_n - \xi_{hn}]$, so that

(5)
$$[\mathfrak{D}_{h}, \mathfrak{D}_{h'}] \sim [1] \ (h + h'; h, h' = 1, 2, \cdots, s).$$

Every such modular system
$$\Omega$$
 is of rank n in n variables.

Every modular system 2 of rank n in n variables decomposes in this way in particular with respect to its resolvent form

$$\mathbf{F}[u_1, \cdots, u_n].$$