THE DECOMPOSITION OF MODULAR SYSTEMS OF RANK n IN n VARIABLES.

(Presented to the Chicago Section of the American Mathematical Society, April 24, 1897.)

BY PROFESSOR ELIAKIM HASTINGS MOORE.

I.

Theorem A. If in the realm $\mathfrak{\Re}$ of integrity-rationality $\mathfrak{M}=\left[x_{1}, \cdots, x_{n}\right]\left(\Re_{1}^{\prime}, \ldots, \Re_{\nu}{ }^{\prime}\right)$, where the $x_{1} \cdots x_{n}$ are independent variables and the realm $\Re^{\prime}=\left(\Re_{1}{ }^{\prime}, \cdots, \Re_{\nu}{ }^{\prime}\right)$ is independent of the $x_{1} \cdots x_{n}$, the modular system

$$
\begin{equation*}
\mathfrak{¿}=\left[L_{1}\left[x_{1}, \cdots, x_{n}\right], \cdots, L_{m}\left[x_{1}, \cdots, x_{n}\right]\right] \tag{1}
\end{equation*}
$$

is contained in the coefficient modular system \mathfrak{F}

$$
\begin{equation*}
\mathfrak{F}=\left[\cdots, f_{\left.k_{1}, \cdots, k_{n} k_{1}, \cdots\right]}^{\left(k_{1} a_{1}, \cdots\right]}\right] \tag{2}
\end{equation*}
$$

of the form

$$
\begin{gather*}
F\left[u_{1}, \cdots, u_{n}\right] \underset{k_{1} \ldots \ldots k_{n} \mid t}{ } \sum_{k_{1} \ldots k_{n}} u_{1}^{k_{1}} \cdots u_{n}^{k_{n}} \tag{3}\\
=\prod_{n=1, s}\left(\sum_{i=1, n}\left(x_{i}-\xi_{n i}\right) u_{i}^{e}\right)^{n} \quad\left(t=\sum_{n=1, s} e_{n}\right)
\end{gather*}
$$

where the $f_{k_{1} \ldots k_{n}}=f_{k_{1} \ldots k_{n}}\left[x_{1}, \cdots, x_{n}\right]$ belong to \Re and the $\xi_{n i}$ belong to \mathfrak{M}^{\prime} or to a family-realm containing \mathfrak{N}^{\prime}, and where the s linear forms $\sum_{i=1, n}\left(x_{i}-\xi_{n i}\right) u_{i}(h=1,2, \cdots, s)$ are distinct, then in the realm $\Re^{*}=\left[x_{1}, \cdots, x_{n}\right]\left(\Re_{1}^{\prime}, \cdots, \Re_{\nu}^{\prime}, \boldsymbol{\xi}_{n i} \begin{array}{c}n=1,2, \ldots, \ldots s \\ i, \ldots\end{array}, \ldots, n^{s}\right)$ the system \mathfrak{Q} decomposes (in the sense of equivalence) into relatively prime factors $\left[\Omega, \mathfrak{D}_{h}{ }^{e}{ }^{h}\right]$,

$$
\begin{equation*}
\Omega \sim \prod_{h=1, s}\left[\Omega, \mathfrak{D}_{h}{ }^{e_{h}}\right] \tag{4}
\end{equation*}
$$

where

$$
\mathfrak{D}_{n}=\left[x_{1}-\xi_{n 1}, \cdots, x_{n}-\xi_{n n}\right], \text { so that }
$$

$$
\begin{equation*}
\left[\mathfrak{D}_{h}, \mathfrak{D}_{h^{\prime}}\right] \sim[1]\left(h \neq h^{\prime} ; h, h^{\prime}=1,2, \cdots, s\right) \tag{5}
\end{equation*}
$$

Every such modular system Ω is of rank n in n variables.
Every modular system \mathbb{Q} of rank n in n variables decomposes in this way in particular with respect to its resolvent form

$$
\mathrm{F}\left[u_{1}, \cdots, u_{n}\right] .
$$

