The length of the arc of an asymptotic curve is given by the integral

$$
s=\sqrt{\lambda} \int_{v}^{\lambda} \frac{d v}{\sqrt{(\lambda-v)(1+\lambda-v)(1-\lambda+v)}}
$$

Introducing the 8 -function with the invariants $g_{2}=\frac{1}{4 \lambda^{2}}$, $g_{3}=0$, and $e_{1}=\frac{1}{4 \lambda}, e_{2}=0, e_{3}=-\frac{1}{4 \lambda},\left(k^{2}=\frac{e_{2}-e_{3}}{e_{1}-e_{3}}=\frac{1}{2}\right)$, we obtain:

$$
\lambda-v=\frac{1}{4 \lambda} \cdot \frac{1}{\wp s}
$$

University of Chicago, August 23, 1895.

ON A GENERALIZATION OF WEIERSTRASS'S

 EQUATION WITH THREE TERMS.bY PROFESSOR F._MORLEY.

The expression

$$
\prod_{\lambda=1}^{n} \sigma\left(u-b_{\lambda}\right) / \sigma\left(u-a_{\lambda}\right)
$$

is an elliptic function of u if

$$
\Sigma a_{\lambda}=\Sigma b_{\lambda}
$$

The sum of the residues is zero; that is,

$$
\begin{equation*}
\sum_{\lambda=1}^{n} \frac{\sigma\left(a_{\lambda}-b_{1}\right) \ldots \sigma\left(a_{\lambda}-b_{\lambda}\right) \ldots \sigma\left(a_{\lambda}-b_{n}\right)}{\sigma\left(a_{\lambda}-a_{1}\right) \ldots} 1 \quad \ldots \sigma\left(a_{\lambda}-a_{n}\right) \quad 1 \quad 0 \tag{1}
\end{equation*}
$$

Being now only concerned with differences, we can, by a suitable addition to each a and b, write

$$
\begin{equation*}
\Sigma a_{\lambda}=\Sigma b_{\lambda}=0 \tag{2}
\end{equation*}
$$

When $n=2$, the equation (1) is in no way characteristic of the σ-function, but is true of any odd function.

When $n=3$, (1) becomes
+
$+\sigma\left(a_{1}-b_{1}\right) \sigma\left(a_{1}-b_{2}\right) \sigma\left(a_{1}-b_{3}\right) \sigma\left(a_{2}-a_{3}\right)$
+
$+\sigma\left(a_{3}-b_{1}\right) \sigma\left(a_{2}-b_{2}\right) \sigma\left(a_{3}-b_{3}\right) \sigma\left(a_{3}-a_{1}\right) \sigma\left(a_{3}-b_{3}\right) \sigma\left(a_{1}-a_{2}\right)$

