ON THE GENERAL TERM IN THE REVERSION

 OF SERIES.```
bY PROF. JamES McMAHON.
```

In reverting the series

$$
y=a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\ldots \quad\left[a_{0} \neq 0\right]
$$

it is usual to assume a development for $x$ in the form

$$
x=A_{0} y+A_{1} y^{2}+A_{2} y^{3}+\ldots,
$$

and then to substitute, and equate coefficients of like powers, thus determining $A_{0}, A_{1}, \ldots$ in succession.

This method does not give any observable law for the independent formation of the expression for the coefficient of a given power of $y$.

A different method, however, based on Lagrange's series, furnishes the desired general term.

The first equation may be written

$$
a_{0} x=y-a_{1} x^{2}-a_{2} x^{3}-\ldots,
$$

or

$$
x=z+b_{1} x^{2}+b_{2} x^{3}+\ldots, \quad=z+\phi(x),
$$

where

$$
z=\frac{y}{a_{0}}, \quad b_{1}=-\frac{a_{1}}{a_{0}}, \quad b_{2}=-\frac{a_{2}}{a_{0}}, \ldots,
$$

and

$$
\phi(x)=b_{1} x^{2}+b_{2} x^{3}+\ldots ;
$$

whence, by Lagrange's series,

$$
x=z+\phi(z)+\frac{1}{2!} \frac{d}{d z}[\phi(z)]^{2}+\frac{1}{3!} \frac{d^{2}}{d z^{2}}[\phi(z)]^{3}+\ldots
$$

