ON THE NUMBER OF INSCRIPTIBLE REGULAR POLYGONS.

BY LEONARD E. DICKSON, B.SC.

LET us denote for brevity the phrase, a regular polygon which is geometrically inscriptible, by P. The P's are few in number compared with the non-P's. The number of P's up to 100 is 24; up to 300 is 37; up to 1000 is 52; up to 1,000,-000, only 206. Indeed, a P must have for the number of its sides a prime number of the form $2^{x} + 1$, or the product of a power of 2 by any number of different primes of that form. This was proven by Gauss; and, more simply, by myself in another paper.* Further, x here must be a power of 2. For if x contains an odd factor m, such that lm = x, then will $2^{x} + 1$ be divisible by $2^{t} + 1$. This is seen by writing y for 2^{t} in $2^{tm} + 1$, which thus becomes $y^{m} + 1$, a number divisible by y + 1. But the inverse of this, that all numbers of the form $(2^{s} + 1)$ are prime, is not generally true, as Fermat affirmed. Euler pointed out that this rule [true for y = 0, 1, 2, 3, 4] fails for y = 5. Again, it is stated in Lucas' Théorie des Nombres, pages 51 and 448, that it fails for y = 6; but that we are still ignorant in the case of y = 7. Hence, the numbers $(2^{s*} + 1)$ and $(2^{s*} + 1)$ do not give P's; while $(2^{1s*} + 1)$ may or may not give a P. Thus the P's below $2^{2s} + 1$ are given by 2^{x} times one, or 2^{x} times the product of two or more different ones, of the primes $2^{1} + 1, 2^{3} + 1,$ $2^{4} + 1, 2^{5} + 1, 2^{15} + 1$; that is, will fall under one of these 32 forms: $2^{x}, 3 \cdot 2^{x}, 5 \cdot 2^{x}, 3 \cdot 5 \cdot 2^{x}, 17 \cdot 2^{x}, 3 \cdot 17 \cdot 2^{x}, 5 \cdot 17 \cdot 2^{x},$ $3 \cdot 5 \cdot 17 \cdot 2^{x}, 257 \cdot 2^{x}, 3 \cdot 257 \cdot 2^{x}, \dots 3 \cdot 5 \cdot 17 \cdot 257 \cdot 65537 \cdot 2^{x}.$ Further, all P's between $2^{2^{s}} + 1$ and $2^{1^{s}} + 1$ als of all under the same 32 forms; for the only new factors which could occur, $2^{3^{*}} + 1$ and $2^{6^{*}} + 1$, are ruled out, not being prime. We cannot proceed to P's of sides greater than $2^{1^{s}} + 1$ (which requires 39 figures to express it).

The object of this paper is to give a general expression for the number of inscriptible regular polygons between certain arbitrary limits.

Theorem I. The number of P's below $2^x + 1$ sides, where x is less than 32, is $\frac{(x-1)(x+2)}{2}$. This follows from the fact that the numbers below $2^{32} + 1$ giving P's have a definite

^{*} See this volume of BULLETIN, p. 20.-ED.