NOTE ON THE DEFINITIONS OF LOGARI'THM AND EXPONENTIAL.

BY PROF. IRVING STRINGHAM.

Professor Haskell's interesting and important investigation calls for a modification of my former definitions of the logarithmic and exponential functions.* I propose that the new specifications shall be as follows:

In a circle whose radius is unity $O T$ is fixed and makes an angle β with the real axis, $O R$ turns about O with a constant speed, Q moves along any line $E S$ in the plane with a constant speed, P along $O R$ with a speed proportional to its distance from O.

Following the notation of my former paper, let the veloc-
 ities of P, Q, R be:

$$
\begin{aligned}
P \text { in } O R \text { at } A & =\lambda, \\
Q \text { in } E S & =\mu, \\
R \text { in } J R S & =\omega ; \\
\text { and let arc } J R & =\theta, \\
\text { circular measure } & \\
\quad \text { of } O D S & =\phi,
\end{aligned}
$$

$$
O P, O Q=p, q
$$

$$
O N, N Q=u, v
$$

$$
O N^{\prime}, N^{\prime} Q=u^{\prime}, v^{\prime}
$$

$$
O M, M P=x, y
$$

In all logarithmic systems the relation

$$
\frac{\omega}{\lambda}=\tan (\phi-\beta)
$$

is assumed to exist. This fixes the ratio of the radial to the transversal velocity of P and determines the form of the curve upon which P moves. Its position may then be determined by fixing two points upon it, and for this purpose we may assume that P crosses the real axis $O J$ at the instant Q crosses the line ET', and that P crosses the circumference of the unit circle at the instant Q crosses the line $O F$ which is drawn through the origin perpendicular to ET. As a consequence of these two assumptions, when $E S$ passes through the origin, A coincides with J, and the figure becomes identical with that of my former paper (loc. cit. p. 18r), which

[^0]
[^0]: * American Journal Mathematics, vol. 14, p. 187.

