THE WIENER LEMMA AND CERTAIN OF ITS GENERALIZATIONS

THIERRY COQUAND AND GABRIEL STOLZENBERG

Let Γ be the unit circle in the complex plane. Let $\mathscr A$ be the Banach algebra of all complex valued continuous functions on Γ with absolutely convergent Fourier series.

Norbert Wiener [10] proved that if any f in $\mathscr A$ is invertible in the ring of continuous functions on Γ , then 1/f also is an element of $\mathscr A$. Paul Lévy [7] generalized Wiener's result, showing that for each f in $\mathscr A$ and each complex analytic function Φ that is defined on a neighborhood of $f(\Gamma)$, $\Phi(f)$ belongs to $\mathscr A$.

Lévy did so by an argument that shows, more generally, that $\Phi(f)$ belongs to $\mathscr A$ whenever f is in $\mathscr A^d$ and Φ is analytic on some neighborhood of $f(\Gamma)$ in $\mathbb C^d$. Later, G. E. Šilov [9] established such a result for a class of Banach algebras of continuous functions that includes $\mathscr A$. Šilov's proof uses the Cauchy-Weil integral formula for an analytic function of several complex variables.

1. An integral formula

Here, we prove the several variable form of the Wiener-Lévy theorem by showing that for each f in \mathscr{A}^d and each Φ analytic on a neighborhood of $f(\Gamma)$ in \mathbf{C}^d , $\Phi(f)$ is given by a one variable Cauchy integral formula for a related \mathscr{A} -valued function that is analytic on a neighborhood of Γ in the plane.

Let u be the identity function restricted to Γ , viewed as an element of \mathscr{A} . If z is at a positive distance from Γ , either 1/z times the geometric series in u/z or -1/u times the geometric series in z/u is an inverse for z-u in \mathscr{A} . Therefore, as an \mathscr{A} -valued function of z, 1/(z-u) is uniformly continuous on the complement of each neighborhood of Γ .

For each n, let f_n be the mapping from Γ to \mathbb{C}^d each coordinate of which is the truncation from -n to n of the Fourier series

Received by the editors March 12, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 42A28.