FINITENESS AND VANISHING THEOREMS FOR COMPLETE OPEN RIEMANNIAN MANIFOLDS

ZHONGMIN SHEN

Let M^n denote an *n*-dimensional complete open Riemannian manifold. In [AG] Abresch and Gromoll introduced a new concept of "diameter growth." Roughly speaking, one would like to measure the essential diameter of ends at distance *r* from a fixed point $p \in M^n$. They showed that M^n is homotopy equivalent to the interior of a compact manifold with boundary if M^n has nonnegative Ricci curvature and diameter growth of order $o(r^{1/n})$, provided the sectional curvature is bounded from below. It is well known that any complete open manifold with nonnegative sectional curvature has finite topological type. This is a weak version of the *Soul Theorem of Cheeger-Gromoll* [CG]. Examples of Sha and Yang show that this kind of finiteness result does not hold for complete open manifolds with nonnegative Ricci curvature in general (see [SY1, SY2]), and additional assumptions are therefore required.

We will use a concept of the essential diameter of ends slightly stronger than that of [AG]: For any r > 0, let B(p, r) denote the geodesic ball of radius r around p. Let C(p, r) denote the union of all unbounded connected components of $M^n \setminus \overline{B(p, r)}$. For $r_2 > r_1 > 0$, set $C(p; r_1, r_2) =$ $C(p, r_1) \cap B(p, r_2)$. Let $1 > \alpha > \beta > 0$ be fixed numbers. For any connected component Σ of $C(p; \alpha r, \frac{1}{\alpha}r)$, and any two points $x, y \in \Sigma \cap \partial B(p, r)$, consider the distance $d_r(x, y) = \inf \text{Length}(\phi)$ between x and y in $C(p, \beta r)$, where the infimum is taken over all smooth curves $\phi \subset C(p, \beta r)$ from x to y. Set diam $(\Sigma \cap \partial B(p, r), C(p, \beta r)) = \sup d_r(x, y)$, where $x, y \in \Sigma \cap \partial B(p, r)$. Then the diameter of ends at distance r from p is defined by

diam
$$(p, r)$$
 = sup diam $(\Sigma \cap \partial B(p, r), C(p, \beta r))$,

where the supremum is taken over all connected components Σ of $C(p; \alpha r, \frac{1}{\alpha}r)$. The *diameter* defined here is not smaller than that defined by Abresch and Gromoll. Our definition will be essential in Lemma 3 and its applications.

The purpose of this note is to announce the following results.

THEOREM A. Let M be a complete open Riemannian manifold with sectional curvature $K_M \ge -K^2$ for some constant K > 0. Assume that for some base point $p \in M$,

$$\limsup_{r\to+\infty}\operatorname{diam}(p,r)<\frac{\ln 2}{K}.$$

©1989 American Mathematical Society 0273-0979/89 \$1.00 + \$.25 per page

Received by the editors February 6, 1989 and, in revised form, May 25, 1989. 1980 Mathematics Subject Classification (1985 Revision). Primary 53C20.