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ITERATION THEORY AND INEQUALITIES 
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1. Introduction. An important problem in the theory of discrete groups 
is to decide when two Möbius transformations ƒ, g acting on the Riemann 
sphere C generate a Kleinian group, that is, a discrete group whose limit 
set contains more than two points. (See [Be and Ml] for further informa­
tion on such groups.) Solutions to the above problem have quite general 
applications, for example, to deformation theory, discreteness of limits 
[Jl] and universal constraints for Kleinian groups [Be], and lower bounds 
for the volume of hyperbolic manifolds [Me, W]. 

We report here on a connection between this problem and iteration 
theory [GM1]. In particular, by analyzing the stable region D for a certain 
quadratic polynomial R, we find inequalities which must be satisfied by 
the generators of a Kleinian group. These include a stronger form of 
Jorgensen's inequality and inequalities new even for the Fuchsian case. 

Our method is similar to that of Zassenhaus [Z], Shimizu [S], Leut-
becher [Le], Jorgensen [Jl], Brooks and Matelski [BM] and others. We 
examine a sequence of subgroups defined by iterating the commutator of 
the generators; after normalization the traces of the commutators of suc­
cessive subgroups are related by a quadratic polynomial R. If the trace of 
the commutator of the original group lies in the region D, then a detailed 
analysis yields a convergent sequence of elements contradicting discrete­
ness. The main difference in our approach is one of emphasis. Earlier 
results were obtained by looking for conditions which guarantee the ex­
istence of such a sequence. We study the region D and let its geometry 
dictate what the hypotheses should be. 

2. Main result. For ^ e C w e set Rp(z) = z2 - 0z and let Rnn denote 
the «th iterate of Rp. The filled in Julia set for Rp is the bounded perfect 
set 

D(P) = {z G C: {Rnp(z)} is a bounded sequence}, 

and the set of eventually periodic points which do not orbit onto 0 is 

p*(P) = {z eC: {Rnp(z)} is a finite set not containing 0}. 

(See the expository articles of [Bl and Ly] for further background on this 
subject.) 
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