CONJECTURE "EPSILON" FOR WEIGHT $k>2$

BRUCE W. JORDAN AND RON LIVNÉ

Introduction. Let $N, k \geq 1$ be integers and suppose $\varepsilon:(\mathbf{Z} / N \mathbf{Z})^{\times} \rightarrow \mathbf{C}^{\times}$ is a Dirichlet character. Set

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbf{Z}) \right\rvert\, c \equiv 0 \bmod N\right\}
$$

A holomorphic function f on the Poincare upper half plane is called a cusp form of level N, weight k, and Nebentypus ε (or briefly a cusp form of type (N, k, ε)) if f has a zero at each cusp and

$$
f\left(\frac{a z+b}{c z+d}\right)=\varepsilon(d)(c z+d)^{k} f(z) \quad \text { for all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(N)
$$

The space of all such cusp forms is denoted $S_{k}\left(\Gamma_{0}(N), \varepsilon\right)$; this space is acted upon by the Hecke operators $\left\{T_{n}, n \geq 1\right\}$. A function $f \in S_{k}\left(\Gamma_{0}(N), \varepsilon\right)$ has a Fourier expansion

$$
f=\sum_{n \geq 1} a_{n}(f) q^{n}=\sum_{n \geq 1} a_{n} q^{n}, \quad q=e^{2 \pi i z}
$$

It is said to be normalized if $a_{1}(f)=1$. A normalized $f \in S_{k}\left(\Gamma_{0}(N), \varepsilon\right)$ which is an eigenfunction of all the Hecke operators has $a_{n}=a_{n}(f)$ lying in the ring of integers $\mathscr{O}=\mathscr{O}_{f}$ of the algebraic number field $K_{f}=\mathbf{Q}\left(a_{n}\right)_{n \geq 1}$.

Consider now a continuous irreducible representation

$$
\rho: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow G L_{2}\left(\overline{\mathbf{F}}_{l}\right)
$$

which is odd, i.e. $\operatorname{det}(\rho(c))=-1$ where c is complex conjugation. Let $f \in S_{k}\left(\Gamma_{0}(N), \varepsilon\right)$ be a normalized eigenfunction of the Hecke operators and λ be a prime above l in the extension of K_{f} generated by the values of ε. Suppose that for each prime p unramified in ρ

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=a_{p}(f) \quad \bmod \lambda \\
& \operatorname{det}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=\varepsilon(p) p^{k-1} \quad \bmod \lambda
\end{aligned}
$$

where $\operatorname{Frob}_{p} \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ is a Frobenius element at p. Then we say that ρ arises from f. In [Se 2], Serre conjectures that every such ρ arises from some cusp form f. He furthermore gives a procedure for determining from ρ the type (N, k, ε) of a modular form which gives rise to it. A second conjecture found in [Se 1], implied by the conjecture above, asserts that in certain cases if such a ρ arises from a modular form then it arises from one of the predicted level. This second conjecture was isolated in the case of weight two and dubbed "Epsilon" because it was sufficient due

