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Officially, model theory was created in 1950 by Alfred Tarski [Ta], who 
described it as a subject that lies on the "borderline between algebra and 
metamathematics." Many see it, nowadays, as generalized algebra, a point 
of view that is strongly emphasized in this book. 

There is one obvious connection between algebra and the concept of 
model. The familiar classes of algebraic structures are usually described as 
the class of models of a given list of axioms. Such are, for instance, the 
class of groups, the class of fields, the class of algebraically closed fields. In 
these examples and in many more, the axioms can be stated as first order 
sentences in a suitable language. Let us explain what we mean by this. A 
logical language L comes equipped with a supply of operation and relation 
symbols of given arities (thus, we have a language for groups, another one 
for fields, a third one for ordered fields, etc.); one of them is always the 
equality symbol '='. The first order sentences of L are statements that use 
these symbols as well as variables and are constructed by means of logical 
connectives ("not", "and", "or", etc.) and quantifiers ("for all xn

9 "there 
exists .x", where x is a variable). The variables are required to be of the 


