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A -̂theory for C*-algebras is also known under the name of "noncommu­
tative" topology. A C*-algebra is a Banach algebra that has the same ab­
stract properties as the algebra &(X) of continuous complex-valued func­
tions on a compact space X except for the fact that the multiplication is 
not necessarily commutative. 

Noncommutative C* -algebras arise naturally from group actions on 
topological spaces, foliated manifolds, pseudodifferential operators, etc., 
and they also formalize the noncommuting variables of quantum mechan­
ics. 

Even if one is only interested in spaces, one often has to extend the 
frame to the noncommutative category as certain natural constructions in 
^-theory automatically lead to noncommutative algebras. One might go 
as far as to compare this to the passage from real to complex numbers in 
analysis. 


