ALGEBRAIC VECTOR BUNDLES OVER REAL ALGEBRAIC VARIETIES

M. BUCHNER AND W. KUCHARZ

By an affine algebraic variety, we mean in this note a locally ringed space (X, \mathcal{R}_X) which is isomorphic to a ringed space of the form (V, \mathcal{R}_V) , where V is a Zariski closed subset in \mathbb{R}^n and \mathcal{R}_V is the sheaf of rings of regular functions on V. Recall that $\mathcal{R}_V(V)$ is the localization of the ring of polynomial functions on V with respect to the multiplicatively closed subset consisting of functions vanishing nowhere on V [2, 15].

Let **F** be one of the fields **R**, **C** or **H** (quaternions). A continuous **F**-vector bundle ξ over X is said to admit an algebraic structure if there exists a finitely generated projective module P over the ring $\mathcal{R}_X(X) \otimes_{\mathbf{R}} \mathbf{F}$ such that the **F**vector bundle over X, associated with P in the standard way, is C^0 isomorphic to ξ .

Our purpose is to study the following

PROBLEM. Characterize continuous **F**-vector bundles over X which admit an algebraic structure.

This is an old problem, but despite considerable effort, the situation is well understood only in a few special cases: when X is the unit sphere S^n [4, 16], when X is the real projective space $\mathbb{R}P^n$ [5, 7] and when dim $X \leq 3$ and $\mathbf{F} = \mathbb{R}$ [8, 9] (cf. also [13] for a short survey).

Clearly, $\mathbb{R}P^n$ with its natural structure of an abstract real algebraic variety is actually an affine variety and every affine real algebraic variety admits a locally closed embedding in some $\mathbb{R}P^n$.

Let us first consider C-vector bundles.

Let X be an affine nonsingular real algebraic variety and assume for a moment that X is embedded in $\mathbb{R}P^n$ as a locally closed subvariety. Consider $\mathbb{R}P^n$ as a subset of the complex projective space $\mathbb{C}P^n$. Let U be a Zariski neighborhood of X in the set of nonsingular points of the Zariski (complex) closure of X in $\mathbb{C}P^n$. Denote by $H^{\text{even}}_{\text{alg}}(U, \mathbb{Z})$ the subgroup of the cohomology group $H^{\text{even}}(U, \mathbb{Z})$ generated by the cohomology classes which are Poincaré dual to the homology classes in the Borel-Moore homology group $H_{\text{even}}(U, \mathbb{Z})$ represented by the closed irreducible complex algebraic subvarieties of U (cf. [3]). Let $H^{\text{even}}_{\mathbb{C}-\text{alg}}(X, \mathbb{Z})$ be the image of $H^{\text{even}}_{\text{alg}}(U, \mathbb{Z})$ via the restriction homomorphism $H^{\text{even}}(U, \mathbb{Z}) \to H^{\text{even}}(X, \mathbb{Z})$. One easily checks that $H^{\text{even}}_{\mathbb{C}-\text{alg}}(X, \mathbb{Z})$ does not depend on the choice of U or the choice of the embedding of X in $\mathbb{R}P^n$.

©1987 American Mathematical Society 0273-0979/87 \$1.00.+ \$.25 per page

Received by the editors November 14, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 14F05, 55B15.

Both authors were supported by NSF grant DMS-8602672.