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DOMAINS IN R2 AND THE POISSON RELATION 
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1. Introduction. Let Q c Rn, n > 2, be a bounded connected domain 
with C°° smooth boundary dQ. Consider the eigenvalues { A ^ } ^ correspond­
ing to the Dirichlet problem for the Laplacian 

(1) - A M = X2u in fî, u = 0 on dQ. 

The Poisson relation for a(t) = ]T • cos Xjt has the form 

(2) singsupp(j(t) C ( J {-T7}U{0}U ( J {T^. 

Here £Q is the union of all generalized periodic geodesies 7 in Ü, includ­
ing those lying entirely on dfi, and T^ is the period (length) of 7 (see [1]). 
Generalized geodesies are projections on Ü of the generalized bicharacteris-
tics of d\ — A, introduced by Melrose and Sjöstrand [6]. We have proved in 
[8, 9] that for generic strictly convex domains in R2 the relation (2) becomes 
an equality and the spectrum of (1) determines the lengths of all periodic 
geodesies (see [5] for related results). The purpose of this announcement is 
to prove the same result for generic nonconvex domains in R2 . 

2. Main results. In the analysis of (2) for nonconvex domains three 
difficulties appear: (A) the existence of periodic geodesies having gliding seg­
ments on dQ and linear segments in the interior of fi, (B) some linear segment 
/ of a periodic geodesic could be tangent to dQ at some interior point of /, (C) 
the linear Poincaré map P1 of a reflecting periodic geodesic 7 could contain 
in its spectrum 1 or tf\ with p G N. We refer to [3] for the precise definition 
of reflecting geodesies and the related Poincaré map. A linear segment is a 
set I = [x,y] = {z\z = ax + (1 - a)y, 0 < a < 1}, while a gliding segment 
is an arc 6 C dû. We show below that generically for domains in R2 the 
phenomena (A), (B), (C) cannot occur. We begin by assuming fi C R2 . 

Set dQ = X and consider the space C ^ b ( X , R 2 ) of all C°° smooth em-
beddings of X into R2 with the Whitney topology [2]. For ƒ G C ^ b ( X , R2) 
we denote by fi/ C R2 the bounded domain with boundary f(X). A set 
Z C C ^ b ( X , R 2 ) will be called residual if Z is a countable intersection of 
open dense sets. 

THEOREM 1. Let Q be a domain with boundary X. There exists a residual 
set Z C C ^ b ( X , R2) such that for every f G Z there are no generalized 
periodic geodesies 7 G Cnf having at least one gliding segment on f(X) and 
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