PERIODIC GEODESICS OF GENERIC NONCONVEX DOMAINS IN R² AND THE POISSON RELATION

VESSELIN M. PETKOV AND LUCHEZAR STOJANOV

1. Introduction. Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a bounded connected domain with C^{∞} smooth boundary $\partial \Omega$. Consider the eigenvalues $\{\lambda_j^2\}_{j=1}^{\infty}$ corresponding to the Dirichlet problem for the Laplacian

(1)
$$-\Delta u = \lambda^2 u \text{ in } \Omega, \qquad u = 0 \text{ on } \partial \Omega.$$

The Poisson relation for $\sigma(t) = \sum_{j} \cos \lambda_{j} t$ has the form

(2)
$$\operatorname{singsupp} \sigma(t) \subset \bigcup_{\gamma \in \mathcal{L}_{\Omega}} \{-T_{\gamma}\} \cup \{0\} \cup \bigcup_{\gamma \in \mathcal{L}_{\Omega}} \{T_{\gamma}\}.$$

Here \mathcal{L}_{Ω} is the union of all generalized periodic geodesics γ in $\overline{\Omega}$, including those lying entirely on $\partial\Omega$, and T_{γ} is the period (length) of γ (see [1]). Generalized geodesics are projections on $\overline{\Omega}$ of the generalized bicharacteristics of $\partial_t^2 - \Delta$, introduced by Melrose and Sjöstrand [6]. We have proved in [8, 9] that for generic strictly convex domains in \mathbb{R}^2 the relation (2) becomes an equality and the spectrum of (1) determines the lengths of all periodic geodesics (see [5] for related results). The purpose of this announcement is to prove the same result for generic nonconvex domains in \mathbb{R}^2 .

2. Main results. In the analysis of (2) for nonconvex domains three difficulties appear: (A) the existence of periodic geodesics having gliding segments on $\partial\Omega$ and linear segments in the interior of Ω , (B) some linear segment l of a periodic geodesic could be tangent to $\partial\Omega$ at some interior point of l, (C) the linear Poincaré map P_{γ} of a reflecting periodic geodesic γ could contain in its spectrum 1 or $\sqrt[3]{1}$ with $p \in \mathbb{N}$. We refer to [3] for the precise definition of reflecting geodesics and the related Poincaré map. A linear segment is a set $l = [x, y] = \{z; z = \alpha x + (1 - \alpha)y, 0 \le \alpha \le 1\}$, while a gliding segment is an arc $\delta \subset \partial\Omega$. We show below that generically for domains in \mathbb{R}^2 the phenomena (A), (B), (C) cannot occur. We begin by assuming $\Omega \subset \mathbb{R}^2$.

phenomena (A), (B), (C) cannot occur. We begin by assuming $\Omega \subset \mathbb{R}^2$. Set $\partial \Omega = X$ and consider the space $C^{\infty}_{emb}(X, \mathbb{R}^2)$ of all C^{∞} smooth embeddings of X into \mathbb{R}^2 with the Whitney topology [2]. For $f \in C^{\infty}_{emb}(X, \mathbb{R}^2)$ we denote by $\Omega_f \subset \mathbb{R}^2$ the bounded domain with boundary f(X). A set $\mathcal{R} \subset C^{\infty}_{emb}(X, \mathbb{R}^2)$ will be called residual if \mathcal{R} is a countable intersection of open dense sets.

THEOREM 1. Let Ω be a domain with boundary X. There exists a residual set $\mathcal{R} \subset C^{\infty}_{emb}(X, \mathbf{R}^2)$ such that for every $f \in \mathcal{R}$ there are no generalized periodic geodesics $\gamma \in \mathcal{L}_{\Omega_f}$ having at least one gliding segment on f(X) and

1980 Mathematics Subject Classification (1985 Revision). Primary 58G25, 35R30.

©1986 American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page

Received by the editors August 26, 1985.