THE MODULI SPACE **OF A** PUNCTURED SURFACE AND PERTURBATIVE SERIES

R. C. PENNER

0. Introduction. Let F_q^s denote the oriented genus q surface with s punctures, $2g - 2 + s > 0$, $s \geq 1$, and choose a distinguished puncture P of F_g^s . Let \mathcal{T}_g^s be the *Teichmüller space* of conformal classes of complete finitearea metrics on F_g^s (see [A]), and let MC_g^s denote the *mapping class group* of orientation-preserving diffeomorphisms of F_q^s (fixing P) modulo isotopy (see $[\mathbf{B}]$). When g, s are understood, we omit their mention. In §1 and §2, we report on joint work with D. B. A. Epstein [EP] where new and useful coordinates on \mathcal{T}_{g}^{s} are given (Theorem 2) and a MC^{s}_{g} -equivariant cell decomposition of T_q^s is described (Theorem 3). There is thus an induced cell decomposition of the quotient $\mathcal{M}_g^s = \frac{7s}{\pi} / MC_g^s$, which is the usual moduli space of F_g^s in case $s = 1$. In §3, we describe a remarkable connection (see [P]) between this cell-decomposition for $s = 1$ and a technique from quantum field theory, which allows the computation of certain numerical invariants of M_q^s (Corollary 6). Analogues of Theorem 3 have been obtained independently by [BE and H] using different techniques. Furthermore, Corollary 7 is in agreement with some recent work in [**HZ**].

Let M denote Minkowskii 3-space with bilinear pairing $\langle \cdot, \cdot \rangle$ of type $(+, +, -)$, and let $L^+ \subset M$ denote the (open) positive light-cone. The uniformization theorem (see $[A]$) allows us to identify \mathcal{T}_{g}^{s} with the space of (conjugacy classes of faithful and discrete) representations of $\pi_1(F^s_{\sigma})$ in $SO(2,1)$ (as a Fuchsian group of the first kind in the component of the identity).

1. Coordinates on 7. Suppose $\pi_1 F = \Gamma \in \mathcal{T}$, and choose a parabolic transformation $\gamma \in \Gamma$ corresponding to the puncture P. γ fixes a unique ray in L^+ , and we choose a point $z \in L^+$ in this ray. If *c* is a bi-infinite geodesic in *F* which tends in both directions to *P* (to be termed simply a *geodesic* in the sequel), let $\gamma(c) \in \Gamma$ denote the corresponding translation, and define the λ -length of (the homotopy class of) *c* to be $\lambda_{\Gamma}(c) = \sqrt{-\langle z, \gamma(c)z \rangle}$. When Γ is understood, we denote $\lambda(c) = \lambda_{\Gamma}(c)$. If h is a Γ -horosphere about P and c is a Γ -geodesic, then we define $d_h(c)$ to be the Γ -hyperbolic length along c from *h* back to *h.*

LEMMA 1. If c_1 and c_2 are geodesics, then

$$
\lim_{h\to P}\exp\{d_h(c_1)-d_h(c_2)\}=[\lambda(c_1)/\lambda(c_2)]^2.
$$

It follows that λ -lengths are natural in the sense that if $\varphi \in MC$, $\Gamma \in \mathcal{T}$, and c_1, c_2 are geodesics, then $\lambda_{\varphi^*\Gamma}(c_1)/\lambda_{\varphi^*\Gamma}(c_2) = \lambda_{\Gamma}(\varphi^{-1}c_1)/\lambda_{\Gamma}(\varphi^{-1}c_2)$,

©1986 American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page

Received by the editors April 29, 1985 and, in revised form, December 18, 1985.

¹⁹⁸⁰ *Mathematics Subject Classification* **(1985** *Revision).* **Primary 14H15, 30F35, 57N05; Secondary 05C30.**