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GENERALIZATIONS OF THE NEUMANN SYSTEM 

BY R. J. SCHILLING1 

0. Introduction. The following observation, due to E. Trubowitz [7], 
illustrates an intimate relationship between spectral theory and Hamiltonian 
mechanics in the presence of constraints. Let q(s) be a real periodic function 
such that Hill's operator, 

* = (s)'-«M. 
has only a finite number g of simple eigenvalues. There exist g + 1 periodic 
eigenfunctions xç>,...,xg and corresponding eigenvalues ao , . . . , ag of L such 
that 

9 g 

l = £z? a n d Q=-J2(arx2r+y2r^ 
r=0 r=0 

where yr = dxr/ds. The equations Lxr — arxr (r = 0 , . . . , g) are equivalent 
to the classical Neumann system [7]. 

H. Flaschka [3] obtained similar results from a different point of view. 
His approach is based on the articles [2 and 5] of I. V. Cherednik and I. M. 
Krichever. The familiar Lax pairs, the constants of motion and the quadrics of 
the Neumann system emerge as consequences of the Riemann-Roch Theorem. 

The purpose of our work is to apply Flaschka's techniques to operators of 
order n > 2. We will be defining higher Neumann systems whose theory is 
closely tied to the spectral theory of linear differential operators of order n. 
C. Tomei [9], using scattering theory, obtained some of our n = 3 formulas. 

Preliminaries. 
(1.1) RlEMANN SURFACE. Let R be a Riemann surface of genus QR with 

a point oo and a rational function whose divisor of poles (A)oo is n°°. We set 
K = Ax/n. Then AC_1 is a local parameter vanishing at oo. Let W be the set 
of Weierstrass gap numbers of oo. 

(1.2) ALGEBRAIC CURVES. We assume that R admits a second rational 
function z with the following 3 properties. There exists an integer N > 0 and 
an integer / e {1,2, . . . , n — 1} relatively prime to n such that 

z = \~NK,~1(ZO + ZIK,~X H ), zo = 1, at oo. 

Let (z)oo = (0)H f-(m), (r) € R, be the divisor of poles of z. Let ar = A(r). 
We assume that each (r) is a simple pole and ar ̂  as whenever s ̂  r. We 
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