GENERALIZATIONS OF THE NEUMANN SYSTEM

BY R. J. SCHILLING ${ }^{1}$

0. Introduction. The following observation, due to E. Trubowitz [7], illustrates an intimate relationship between spectral theory and Hamiltonian mechanics in the presence of constraints. Let $q(s)$ be a real periodic function such that Hill's operator,

$$
L=\left(\frac{d}{d s}\right)^{2}-q(s)
$$

has only a finite number g of simple eigenvalues. There exist $g+1$ periodic eigenfunctions x_{0}, \ldots, x_{g} and corresponding eigenvalues a_{0}, \ldots, a_{g} of L such that

$$
1=\sum_{r=0}^{g} x_{r}^{2} \quad \text { and } \quad q=-\sum_{r=0}^{g}\left(a_{r} x_{r}^{2}+y_{r}^{2}\right)
$$

where $y_{r}=d x_{r} / d s$. The equations $L x_{r}=a_{r} x_{r}(r=0, \ldots, g)$ are equivalent to the classical Neumann system [7].
H. Flaschka [3] obtained similar results from a different point of view. His approach is based on the articles [2 and 5] of I. V. Cherednik and I. M. Krichever. The familiar Lax pairs, the constants of motion and the quadrics of the Neumann system emerge as consequences of the Riemann-Roch Theorem.

The purpose of our work is to apply Flaschka's techniques to operators of order $n \geq 2$. We will be defining higher Neumann systems whose theory is closely tied to the spectral theory of linear differential operators of order n. C. Tomei $[\mathbf{9}]$, using scattering theory, obtained some of our $n=3$ formulas.

Preliminaries.

(1.1) Riemann surface. Let R be a Riemann surface of genus g_{R} with a point ∞ and a rational function whose divisor of poles $(\lambda)_{\infty}$ is n^{∞}. We set $\kappa=\lambda^{1 / n}$. Then κ^{-1} is a local parameter vanishing at ∞. Let W be the set of Weierstrass gap numbers of ∞.
(1.2) Algebraic CURVEs. We assume that R admits a second rational function z with the following 3 properties. There exists an integer $N \geq 0$ and an integer $l \in\{1,2, \ldots, n-1\}$ relatively prime to n such that

$$
z=\lambda^{-N} \kappa^{-l}\left(z_{0}+z_{1} \kappa^{-1}+\cdots\right), \quad z_{0}=1, \text { at } \infty .
$$

Let $(z)_{\infty}=(0)+\cdots+(m),(r) \in R$, be the divisor of poles of z. Let $a_{r}=\lambda(r)$. We assume that each (r) is a simple pole and $a_{r} \neq a_{s}$ whenever $s \neq r$. We

[^0]
[^0]: Received by the editors September 30, 1985.
 1980 Mathematics Subject Classification (1985 Revision). Primary 58F07, 58F19, 14 H 40 .
 ${ }^{1}$ Supported in part by NSF (Fellowship) Grant No. MCS-8211308, NSF Grant No. MCS-8102748, and Department of the Army DAAG 29-82-K-0068.

