GENERALIZATIONS OF THE NEUMANN SYSTEM

BY R. J. SCHILLING¹

0. Introduction. The following observation, due to E. Trubowitz [7], illustrates an intimate relationship between spectral theory and Hamiltonian mechanics in the presence of constraints. Let q(s) be a real periodic function such that Hill's operator,

$$L = \left(\frac{d}{ds}\right)^2 - q(s),$$

has only a finite number g of simple eigenvalues. There exist g + 1 periodic eigenfunctions x_0, \ldots, x_g and corresponding eigenvalues a_0, \ldots, a_g of L such that

$$1 = \sum_{r=0}^g x_r^2 \quad ext{and} \quad q = -\sum_{r=0}^g (a_r x_r^2 + y_r^2),$$

where $y_r = dx_r/ds$. The equations $Lx_r = a_r x_r$ (r = 0, ..., g) are equivalent to the classical Neumann system [7].

H. Flaschka [3] obtained similar results from a different point of view. His approach is based on the articles [2 and 5] of I. V. Cherednik and I. M. Krichever. The familiar Lax pairs, the constants of motion and the quadrics of the Neumann system emerge as consequences of the Riemann-Roch Theorem.

The purpose of our work is to apply Flaschka's techniques to operators of order $n \ge 2$. We will be defining higher Neumann systems whose theory is closely tied to the spectral theory of linear differential operators of order n. C. Tomei [9], using scattering theory, obtained some of our n = 3 formulas.

Preliminaries.

(1.1) RIEMANN SURFACE. Let R be a Riemann surface of genus g_R with a point ∞ and a rational function whose divisor of poles $(\lambda)_{\infty}$ is n^{∞} . We set $\kappa = \lambda^{1/n}$. Then κ^{-1} is a local parameter vanishing at ∞ . Let W be the set of Weierstrass gap numbers of ∞ .

(1.2) ALGEBRAIC CURVES. We assume that R admits a second rational function z with the following 3 properties. There exists an integer $N \ge 0$ and an integer $l \in \{1, 2, ..., n-1\}$ relatively prime to n such that

$$z = \lambda^{-N} \kappa^{-l} (z_0 + z_1 \kappa^{-1} + \cdots), \qquad z_0 = 1, \text{ at } \infty.$$

Let $(z)_{\infty} = (0) + \cdots + (m)$, $(r) \in R$, be the divisor of poles of z. Let $a_r = \lambda(r)$. We assume that each (r) is a simple pole and $a_r \neq a_s$ whenever $s \neq r$. We

©1986 American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page

Received by the editors September 30, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 58F07, 58F19, 14H40.

¹Supported in part by NSF (Fellowship) Grant No. MCS-8211308, NSF Grant No. MCS-8102748, and Department of the Army DAAG 29-82-K-0068.