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AN ALMOST-ORTHOGONALITY PRINCIPLE
WITH APPLICATIONS TO MAXIMAL FUNCTIONS
ASSOCIATED TO CONVEX BODIES

BY ANTHONY CARBERY!

1. Introduction. Let B be a convex body in R", normalised to have vol-
ume one. Let M be the centred Hardy-Littlewood maximal function defined
with respect to B, i.e.

Mf(z) = supt~" / -l

t

Let M be the lacunary maximal operator,
Mf(z) = sup?"‘"/ |f(z - y)| dy.
k 2kB

Considerable interest has recently been shown in the behaviour of these op-
erators for large n, see [1,2,8,9,10]. When B is the ball, Stein has shown
(8] that M is bounded on LP(R"), 1 < p < oo, with a constant C,, depending
only on p, and not on n; Stein and Strémberg [10] have shown that for p larger
than 1, the LP operator norm of M is at most linear in the dimension. More
recently Bourgain has proved that the L? operator norm of M is bounded by
an absolute constant independent of the body and the dimension [1]. It is the
purpose of this note to extend this result to p > 3/2, and to all p > 1 if we
instead consider M.

THEOREM 1. (i) Let p > 3/2. Then there exists a constant Cp, depending
only on p and not on B or n, such that |Mf|p, < Cp||fllp-
(ii) Let p > 1. Then there ezists a constant D, depending only on p and

not on B or n, such that | M|, < Dp||flp-

It has recently been brought to the author’s attention that part (i) of the
theorem has been proved by Bourgain? in the special case that B is the cube
[2]. Here we show that Theorem 1 in fact follows from Bourgain’s previous
analysis together with a general almost-orthogonality principle for maximal
functions, Theorem 2. A weaker version of this principle appears in [6], where
it is also applied to various operators including maximal functions and Hilbert
transforms along curves. A similar principle due to Michael Christ appears
in [4].

Full details of the proofs, together with further applications, will appear
elsewhere.
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2NOTE ADDED IN PROOF. Theorem 1 has been proved in full independently by
J. Bourgain.
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