ON PLATEAU'S PROBLEM FOR MINIMAL SURFACES OF HIGHER GENUS IN R³

BY FRIEDRICH TOMI AND ANTHONY TROMBA

The classical solution of the Plateau problem by Radó [10] and Douglas [3] shows that any rectifiable Jordan curve in \mathbb{R}^3 is spanned by a minimal surface of disc type. Under what conditions a minimal surface of a given higher genus exists, spanning a given Jordan curve in a Riemannian manifold N, seems to be a much more difficult problem. For compact minimal surfaces without boundary and in case N has sufficient topological complexity, the "incompressibility" method of Schoen and Yau gives a sufficient condition for existence.

In [4] Douglas did develop a method to treat the problem of when a *given* contour is spanned by a surface of genus \mathfrak{p} . Douglas' condition, however, seems quite difficult to verify in concrete cases. In this paper we will give simple geometric and topological sufficient conditions.

THEOREM. Let N be a solid torus of class C^3 and genus \mathfrak{g} in \mathbb{R}^3 whose boundary has nonnegative inward mean curvature, and let $\gamma \in \Pi_1(N)$ denote the homotopy class of a rectifiable Jordan curve Γ in N. (a) If $\mathfrak{g} = 2\mathfrak{p}$ and $\gamma = a_1a_2a_1^{-1}a_2^{-1}\cdots a_{2\mathfrak{p}-1}a_{2\mathfrak{p}-1}a_{2\mathfrak{p}}^{-1}$ where $a_1, \ldots, a_{2\mathfrak{p}}$

(a) If $\mathfrak{g} = 2\mathfrak{p}$ and $\gamma = a_1a_2a_1^{-1}a_2^{-1}\cdots a_{2\mathfrak{p}-1}a_{2\mathfrak{p}-1}a_{2\mathfrak{p}-1}^{-1}a_{2\mathfrak{p}}^{-1}$ where $a_1, \ldots, a_{2\mathfrak{p}}$ is a basis for $\Pi_1(N)$ then Γ bounds an immersed oriented minimal surface of genus \mathfrak{p} .

(b) If $\mathfrak{g} = 1$ and $\gamma = 2\alpha$ for some $\alpha \neq 0$ in $\Pi_1(N)$ then Γ bounds an immersed minimal surface of Möbius type.

We sketch the proof of part (a).

Let Γ be a rectifiable contour in a solid $2\mathfrak{p}$ torus $N \subset \mathbf{R}^3$, M a surface of genus \mathfrak{p} with $\partial M \cong S^1$ the unit circle. Further let $\mathcal{N}_{\Gamma} = \{u: M \to N | u: M \to \Gamma \text{ monotonically}, u \in H^1(M, \mathbf{R}^3) \cap C(M, \mathbf{R}^3)\}$. Denote by \mathcal{M} the C^{∞} Riemannian metrics g on the Schottky double \hat{M} of M such that the natural involution $T: \hat{M} \leftrightarrow$ is an isometry for g. Dirichlet's functional

$$E\colon \mathcal{M}\times\mathcal{N}_{\Gamma}\to R$$

is defined by

$$E(g,u)=rac{1}{2}\sum_{i=1}^3\int_M g(x)(
abla_g u^i,
abla_g u^i)\,d\mu_g.$$

Let P be the space of all C^{∞} positive functions on \hat{M} which are symmetric and D_0 those C^{∞} diffeomorphisms which fix $\partial M \subset \hat{M}$ (as a set) and are homotopic to the identity. The Teichmüller space for M is then defined to be $\mathcal{T} = (\mathcal{M}/P)/D_0$, a finite-dimensional C^{∞} manifold of dimension

Received by the editors May 13, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 53A10, 49F10.