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1. Early history. In 1772 Euler [11] thought it noteworthy to remark that 

x2 - x + 41 = prime, x = 1,2,...,40. 

This subject was again touched upon by Legendre [28] in 1798 when he 
announced 

x2 + x + 41 = prime, x = 0 , 1 , . . . , 39. 

These remarkable polynomials, which take on prime values for many values 
of JC, are one of the earliest recorded instances of a phenomenon related to 
what is now commonly referred to as Gauss' class number one problem. In 
fact, at the Fifth International Congress of Mathematicians, Rabinovitch [34] 
stated the following 

THEOREM (RABINOVITCH). D < 0, D = 1 (mod 4), 

2 • 1+1^1 • , 0 1^1-3 
x — x H -r—- = prime, x = 1,2,..., -———, 

if and only if every integer of the field Q(jD) has unique factorization into 
primes. 

A similar theorem holds for the polynomial x2 + x + (1 + \D\)/4. It is 
known that 0 ( ^ - 1 6 3 ) has the unique factorization property, and this accounts 
for the remarkable polynomials above. 

Gauss' class number problem has a long, curious, and interesting history. 
Perhaps the subject really goes back to Fermât, who in 1654 stated theorems 
like (here p = prime) 

p = 6n + l=>p = x2 + 3y2, 

p = Sn + l=*p = x2 + 2y2, 

which were first proved by Euler in 1761 and 1763. Many other representation 
theorems of integers as sums of squares were proved in the eighteenth century, 
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