FIVE SHORT STORIES ABOUT THE CARDINAL SERIES

BY J. R. HIGGINS

CONTENTS

Introduction
Story One. Historical notes
Story Two. Some methods for deriving the cardinal and allied series
Story Three. L^2 and L^p theory
Story Four. The cardinal series and LCA groups
Story Five. Extensions to higher dimensions
Conclusion

INTRODUCTION

Suppose that a function g generates a Fourier series in the usual way:

\[g(x) \sim \sum c_n e^{-inx}. \]

Now multiply both members by \(e^{ixt}/2\pi \) and formally integrate over a period. On the right we obtain

\[\sum c_n \frac{\sin \pi(t-n)}{\pi(t-n)}, \]

or, equivalently,

\[\frac{\sin \pi t}{\pi} \sum c_n \frac{(-1)^n}{t-n}, \]

which is called a "cardinal series". On the left we obtain a function \(f \) whose form

\[f(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x) e^{ixt} \, dx \]

suggests that it has a Fourier transform with compact support on \([-\pi, \pi]\), or, put another way, \(f \) has no frequency content outside the "band" \([-\pi, \pi]\). One can expect that such an \(f \) will be represented in some sense by the cardinal series (1), and that in all likelihood the coefficient \(c_n \) will, because of (2), be of the form \(f(n) \).

Received by the editors September 19, 1984.

1980 Mathematics Subject Classification. Primary 41A05, 42C10; Secondary 41-03, 01A55, 42B99, 42C30, 94-03, 01A60, 94A05.