CHARACTERISTIC CLASSES OF SURFACE BUNDLES

BY SHIGEYUKI MORITA

In this paper we define characteristic classes of surface bundles, namely smooth fibre bundles whose fibres are a closed orientable surface Σ_g of genus $g \geq 2$, and announce some nontriviality results for them. As a consequence we obtain lower bounds for the Betti numbers of the mapping class group M(g) of Σ_g .

It is known [**EE**] that the connected component of the identity of $\text{Diff}_+ \Sigma_g$, the group of orientation preserving diffeomorphisms of Σ_g , is contractible. Therefore $B\text{Diff}_+ \Sigma_g$ is a K(M(g), 1). Now let ξ be the tangent bundle along the fibres of an oriented surface bundle and let $e(\xi)$ be its Euler class. If we apply the Gysin homomorphsm to $e^{i+1}(\xi)$, we obtain an integral cohomology class of the base space of degree 2i. By naturality this defines certain cohomology classes $e_i \in H^{2i}(M(g): \mathbb{Z})$ (i = 1, 2, ...). M(g) acts on $H^1(\Sigma_g; \mathbb{Z})$, preserving the symplectic form given by the cup product, so we obtain a homomorphism $M(g) \to \text{Sp}(2g; \mathbb{Z})$, where $\text{Sp}(2g; \mathbb{Z})$ is the group of all $2g \times 2g$ symplectic matrices with integral entries. This induces a homomorphism $M(g) \to \text{Sp}(2g; \mathbb{R})$. Since $\text{Sp}(2g; \mathbb{R})$ has U(g) as a maximal compact subgroup, we have a g-dimensional complex vector bundle η on K(M(g), 1). Let $c_i(\eta) \in H^{2i}(M(g); \mathbb{Z})$ be its *i*th Chern class. From the argument of Atiyah in [**A**] and the fact that η is flat as a real vector bundle, we can conclude

$$e_{2i-1} = (-1)^i (2i/B_i) s_{2i-1}(c(\eta))$$
 $(i = 1, 2, ... \text{ and coefficients are in } \mathbf{Q}),$
 $s_{2i}(c(\eta)) = 0$

where $s_i(c(\eta))$ stands for the characteristic class of η corresponding to the formal sum $\sum_j t_j^i$, and B_i is the *i*th Bernoulli number. These two relations induce those among monomials of e_{2i-1} 's and the quotient

$$\mathbf{Q}[e_1, e_3, \ldots]/(\text{relations})$$

is naturally isomorphic to the relative Lie algebra cohomology $H^*(\mathfrak{sp}(2g; \mathbb{R}), \mathfrak{u}(g))$, which in turn is *additively* isomorphic to $H^*(S^2 \times S^4 \times \cdots \times S^{2g}; \mathbb{Q})$ (see **[BH]**). It is known that M(g) acts properly discontinuously on the Teichmüller space $T(g) \cong \mathbb{R}^{6g-6}$ with noncompact quotient \mathcal{M}_g , the moduli space for Riemann surfaces of genus g. Hence $\operatorname{vcd}(M(g)) \leq 6g-7$. Thus any monomial of e_i 's of degree $\geq 6g-6$ vanishes. To sum up we have a homomorphism

$$\phi \colon \mathbf{Q}[e_1, e_2, \ldots] / (\text{above relations}) \to H^*(M(g); \mathbf{Q});$$

here we use the letters e_i for both symbolic and actual meanings. Since vcd(M(g)) is conjectured to be 3g - 3 [Hv], ϕ will surely still have a large kernel. Our main results are

1980 Mathematics Subject Classification. Primary 55R40, 57N05; Secondary 32G15.

Received by the editors July 26, 1983.

^{©1984} American Mathematical Society 0273-0979/84 \$1.00 + \$.25 per page