ON THE VANISHING OF POINCARÉ SERIES OF RATIONAL FUNCTIONS

BY IRWIN KRA¹

1. Let Γ be a finitely generated nonelementary Kleinian group with region of discontinuity Ω and limit set Λ . Let $\lambda(z)|dz|$ be the Poincaré metric on Ω (normalized to have constant negative curvature -1). Let $q \in \mathbb{Z}$, $q \geq 2$. A cusp form for Γ of weight (-2q) is a holomorphic function φ on Ω satisfying

(1)
$$\varphi(\gamma z)\gamma'(z)^q = \varphi(z), \text{ for all } \gamma \in \Gamma, \text{ for all } z \in \Omega,$$

and either (hence both) of the following equivalent conditions:

(2)
$$\int \int_{\Omega/\Gamma} \lambda(z)^{2-q} |\varphi(z) \, dz \wedge d\overline{z}| < \infty;$$

(3)
$$\sup_{z\in\Omega}\{\lambda(z)^{-q}|\varphi(z)|\}<\infty.$$

The equivalence of (2) and (3) shows that the Peterson scalar product

(4)
$$\langle \varphi, \psi \rangle = i \iint_{\Omega/\Gamma} \lambda(z)^{2-2q} \varphi(z) \overline{\psi(z)} \, dz \wedge \overline{dz}$$

induces a Hilbert space structure on the space of cusp forms.

Let Δ be a Γ -invariant union of components of Ω , and define $\mathbf{A}_q(\Delta)$ to be the space of cusp forms for Γ of weight (-2q) that vanish on $\Omega \setminus \Delta$. Abbreviate $\mathbf{A}_q(\Omega)$ by \mathbf{A}_q .²

Define R_q to be the space of rational functions f such that (5) f is holomorphic on Ω ,

(6) f has only simple poles (on Λ), and

(7)
$$f(z) = O(|z|^{-2q}), \quad z \to \infty \text{ if } \infty \in \Omega, \text{ and}$$
$$f(z) = O(|z|^{-(2q-1)}), \quad z \to \infty \text{ if } \infty \in \Lambda.$$

If $f \in R_q$, then the Poincaré series

(8)
$$\sum_{\gamma \in \Gamma} f(\gamma z) \gamma'(z)^q, \quad z \in \Omega,$$

converges absolutely and uniformly on compact subsets of Ω and defines a cusp form $\Theta_q f \in \mathbf{A}_q$. Bers [3] has shown that

© 1983 American Mathematical Society 0273-0979/82/0000-1040/\$02.00

Received by the editors August 16, 1982 and, in revised form, September 20, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10D15, 30F40.

¹Research partially supported by NSF grant MCS8102621.

²The group Γ is fixed throughout this paper. We hence suppress in the notation the dependence on Γ of the various spaces and operators considered.