Introduction. Let G be a finite group. The results announced here come from a study of the following general question: Classify all G actions on a sphere S, G homotopic to a given linear action.

This question has smooth, piecewise linear, and topological versions. Wall \([W]\) solved the pl and topological problem, for free actions, when G is cyclic of odd order, and the dimension of the sphere is greater than 3. There are many partial results in the nonfree case. For example, if S is locally smooth, if dimension $S^G > 5$ and S satisfies the mild gap condition i.e. dimension $S^{H_1} - \text{dimension } S^{H_2} > 2$, for both nonempty and $H_1 \subsetneq H_2$, then by G engulfing \([I]\) S is topologically linear, and further if S is a pl G manifold, by G s-cobordism theorem \([R]\) S is equivariantly pl determined by a generalized Whitehead torsion invariant.

In this note we announce some new results on this question.

Statements of results. In what follows G will always represent a cyclic group of odd order. We work in the locally linear i.e. locally smooth topological or pl category.

Theorem A. Locally linear pl or top G-vector bundles are oriented with respect to $KO_G(\quad) \otimes \mathbb{Z}[\frac{1}{2}]$.

From this, the methods of Schultz-Sullivan, cf. \([S]\) and character theory one deduces easily the answer to the specific question which motivated our work.

Theorem B. Topologically conjugate representations of groups of odd order are linearly conjugate.