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THE THEORY OF RECURSIVE FUNCTIONS, 
APPROACHING ITS CENTENNIAL1 

{Elementarrekursiontheorie vom hbheren Standpunkte aus.1) 

BY STEPHEN C. KLEENE 

ABSTRACT. An algorithm is a procedure, given by a finite set of instructions, 
to serve as follows in relation to a given infinite class of questions, (a) If we 
select any question from the class, the instructions will tell us how to 
perform a step, (b) After any step, if we do not receive the answer then, the 
instructions together with the existing situation will tell us what step to take 
next, (c) The instructions will enable us to recognize when a situation is 
reached in which the answer is before us, and to read it off then; and this 
will eventually happen if the question has an answer. In "steps" and 
"situations'*, what are we handling? Since there must be no ambiguity, 
surely some kind of regular complexes of occurrences of symbols from a 
given finite list. Such complexes can be coded by positive integers. Consider 
specifically an algorithm for computing a functional <p(B; 8T) where 0 are 
number-theoretic function variables and 31 are natural number variables. A 
question is selected from the infinite class "What is the value of ^(9; 31)?" 
by specifying (0; 21). I gain some space for maneuver by using instead 
(0; % 0). After any step, the situation will be represented by (0; 8, b) 
where b is the code for the complex of symbols in it. By (c), there must be a 
functional x(0; % b)> for which we already know how to get the values, 
such that, in the situation represented by (0; ft, b), x(6; ft, £) *• 0 if the 
answer is not before us, and otherwise x(0; % b) — <K0; % b) + 1 where 
<K0; ft, b) is the answer; and x(0; ft, 0) - 0. By (b) and (a), there must 
likewise be a functional p(0; ft, b) such that in the situation represented by 
(0; ft, b), if x(0; ft, b) - 0 then (0; ft, p(0; ft, b)) represents the situation 
after the next step; and (0; 21, p(0; ft, 0» represents the situation after the 
first step. Now, putting <K@î ft, b) « <f<0; ft, p(0; ft, b)) if x(6; % &) - 0, 
« x(0; ft, b) - 1 if x(0; % b) > 0, we have a definition of <K0; ft, b) of 
the form # 0 ; % b) « ^(mb^è\ ft, b), 0 ; 2t, b) as in Kleene's first recur­
sion theorem [15>52, p. 348]; and « 0 ; 3Q « <J<0; % 0). Thence it is argued 
that the first recursion theorem, in a proper setting, enables all functionals 
<K0; 21) to be defined for which there are algorithms; and consequences are 
deduced therefrom. 

The theory of recursive functions is nearly one hundred years old. For 
nearly the first fifty years it was the theory of what are now called "primitive 
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'I prepared this paper for a general audience. Then I was amazed to find on the program 
twenty-three other papers (including four special sessions organized by Richard A. Shore) on 
recursion theory, which illustrates the health of the nonagenarian. 

2Kleene is a North German form of Klein. 
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