RESEARCH ANNOUNCEMENTS

THE TETRAGONAL CONSTRUCTION

BY RON DONAGI¹

1. Preliminaries. Let C be a nonsingular curve of genus g, and $\pi \colon \widetilde{C} \to C$ an unramified double cover. The Prym variety $P(C,\widetilde{C})$ is by definition $\ker^0(Nm)$, where $Nm \colon J(\widetilde{C}) \to J(C)$ is the norm map, and \ker^0 is the connected component of 0 in the kernel. By [M] this is a (g-1)-dimensional, principally polarized abelian variety. Let A_g , M_g , R_g denote, respectively, the moduli spaces of g-dimensional principally polarized abelian varieties, curves of genus g, and pairs (C,\widetilde{C}) as above. $(R_g$ is a $(2^{2g}-1)$ -sheeted cover of M_g .) The Prym map is the morphism

$$P = P_g: R_g \longrightarrow A_{g-1}, \quad (C, \widetilde{C}) \mapsto P(C, \widetilde{C}).$$

It is analogous to the Jacobi map $J=J_g\colon M_g\to A_g$ sending a curve to its Jacobian. The main reason for studying P is that its image in R_{g-1} is larger than that of J, hence it allows us to handle geometrically a wider class of abelian varieties than just Jacobians. For instance, P_g is dominant for $g\leqslant 6$ [W] while J_g is only dominant for $g\leqslant 3$.

The purpose of this announcement is to describe the fibers of P in the various genera. Our main tool for this is a simple-minded construction which we describe in some detail in paragraph 6. Let us use "n-gonal" (trigonal, tetragonal, etc.) to describe a pair (C, f) where $f: C \to \mathbf{P}^1$ is a branched cover of degree n (3, 4 respectively). Briefly, our construction takes the data (C, \widetilde{C}, f) where $(C, \widetilde{C}) \in \mathbb{R}_g$ and (C, f) is tetragonal, and returns two new sets of data, $(C_0, \widetilde{C}_0, f_0)$ and $(C_1, \widetilde{C}_1, f_1)$, of the same type. This procedure is symmetric: starting with $(C_0, \widetilde{C}_0, f_0)$ we end up with (C, \widetilde{C}, f) and $(C_1, \widetilde{C}_1, f_1)$. It is useful due to the following observation.

PROPOSITION 1.1. The tetragonal construction commutes with the Prym map:

$$P(C, \widetilde{C}) \approx P(C_0, \widetilde{C}_0) \approx P(C_1, \widetilde{C}_1).$$

Received by the editors September 3, 1980,

1980 Mathematics Subject Classification. Primary 14H15, 14H30, 14K10, 32G20, 14H40.

¹Research partially supported by NSF Grant MCS #77-03876.