AFFINE MANIFOLDS AND SOLVABLE GROUPS

BY D. FRIED, W. GOLDMAN AND M. W. HIRSCH

Let M be a *compact* affine manifold. Thus M has a distinguished atlas whose coordinate changes are locally in Aff(E), the group of affine automorphisms of Euclidean n-space E. Assume M is connected and without boundary.

The universal covering \widetilde{M} of M has an affine immersion D: $\widetilde{M} \to E$ which is unique up to composition with elements of Aff(E). Corresponding to D there is a homomorphism α : $\pi \to Aff(E)$, where π is the group of deck transformations of \widetilde{M} , such that D is equivariant for α . Set $\alpha(\pi) = \Gamma$. Let L: $Aff(E) \to GL(E)$ be the natural map.

THEOREM 1. If Γ is nilpotent the following are equivalent:

- (a) M is complete, i.e. D: $\widetilde{M} \rightarrow E$ is bijective;
- (b) D is surjective;
- (c) no proper affine subspace of E is invariant under Γ ;
- (d) $L(\Gamma)$ is unipotent;
- (e) M has parallel volume, i.e. $L(\Gamma) \subset SL(E)$;
- (f) M is affinely isomorphic to $\Gamma \backslash G$ where G is a connected Lie group with a left-invariant affine structure and $\Gamma \subseteq G$ is a discrete subgroup;
- (g) each de Rham cohomology class of M is represented by a differential form whose components in affine charts are polynomials.

For abelian Γ the equivalence of (a), (d), and (e) is due to J. Smillie. We conjecture that (a), (b), (e), and (g) are equivalent even without nilpotence (if M is orientable). In general (a) \Rightarrow (c) and (e) \Rightarrow (c); but (c) \Rightarrow (a) even for Γ solvable and M three-dimensional.

THEOREM 2. The following are equivalent:

- (i) M is finitely covered by a complete affine nilmanifold M_1 (i.e. conditions (a) through (g) of Theorem 1 hold for M_1);
 - (ii) all eigenvalues of elements of $L(\Gamma)$ have norm 1;
- (iii) M has a Riemannian metric whose coefficients in affine charts are polynomials.
- L. Auslander has conjectured that if M is complete then $\pi = \Gamma = \pi_1(M)$ is virtually solvable (i.e. contains a solvable subgroup of finite index); see [M] for discussion. This conjecture is true in dimension three (see [FG]).